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Abstract: In order to improve performances of logistics systems, one of tasks is to properly locate relevant logistics 
objects. Some of these tasks can be modeled as the Anti-Covering Location Problem (ACLP). The ACLP belongs to the 
class of discrete location problems and could be defined in the following way: for a given set of potential facility 
location sites, a maximally weighted set of facilities is located in such a way that no two placed facilities are inside a 
pre-specified distance of each other. It is NP hard problem. In this paper we presented the Bee Colony Optimization 
(BCO) tailored for the ACLP. The BCO algorithm is popular technique inspired by bees’ behavior in nature. In the 
contrary to the previously published papers related to the BCO application on the ACLP, here we focus on weighted 
version of this location problem. The proposed approach is tested on numerous benchmark problems. 
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1. INTRODUCTION 

The Bee Colony Optimization (BCO) is a meta-
heuristic which belongs to the class of stochastic 
swarm optimization methods. The BCO is inspired 
by the foraging habits of bees in the nature. The 
basic idea behind the BCO is to create the multi 
agent system (colony of artificial bees) capable to 
successfully solve difficult combinatorial 
optimization problems. The artificial bee colony 
behaves partially alike, and partially differently from 
bee colonies in nature. The BCO has been proposed 
by Lučić and Teodorović [1, 2, 3, 4], and belongs to 
the class of constructive methods. It was designed as 
a method which built solutions from the scratch with 
execution steps, contrary to the local search based 
meta-heuristics, which perform iterative 
improvements of the current best solutions. In this 
paper we present the BCO algorithm tailored to deal 
with the Anti-Covering Location Problem (ACLP). 

The ACLP belongs to an important class of 
location models which maximizing the total value of 
facilities sited while also ensuring spatial separation 
between located facilities. It is discrete location 
problem and could be defined in the following way: 

for a given set of potential facility location sites, a 
maximally weighted set of facilities is located in 
such a way that no two placed facilities are inside a 
pre-specified distance or time standard of each other. 
In the case of ACLP the total number of facilities to 
be sited is not given in advance. 

If we define a network where the set of facility 
sites represent the nodes and the arcs represent each 
pair of nodes which lie within the pre-specified 
distance or time standard, then the ACLP is 
equivalent to the Node/Vertex Packing Problem 
once the network has been defined using the 
restriction requirement. Node/Vertex Packing 
Problem and ACLP are closely related to the 
Maximal Clique and Vertex Cover Problems. 
Further, they are related to minimum separation and 
dispersion models [5]. 

A wide variety of particular applications of the 
ACLP and related problems can be found in 
literature. The applications include forest 
management, nature reserve design, 
telecommunications equipment sitting, military 
defense location, undesirable facility location, water 
conservation, social service provision, zoning policy 
development, franchise outlet location, cartographic 
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design, and a range of other planning contexts [7, 8, 
9, 10, 11, 12, 13]. 

The ACLP, as the NP-hard problem [14], was 
solved by various heuristic and meta-heuristic 
algorithms: Greedy Heuristic algorithms [9], 
Lagrangian relaxation [6] and Genetic Algorithm 
[14]. The BCO implementation on the “unweighted” 
version of the ACLP (all potential facility sites have 
the same weights that are equal to one) [13] showed 
that the BCO is very competitive with other state-of-
art techniques. This implementation was illustrated 
on example of dangerous goods warehouse location 
problem as an important location problem in the 
field of hazardous materials logistics. One of 
directions for future research listed in [13] was to 
tailor the BCO on “weighted” version of the ACLP. 
Thus, the purpose of this paper is to present the BCO 
algorithm tailored to deal with more realistic, 
“weighted” version of the ACLP and to demonstrate 
that in this case it can also be successfully applied. 

This paper is organized as follows. Section after 
Introduction provides mathematical formulation of 
the ACLP. Content of the following Section presents 
brief description of the BCO and actual 
implementation of the BCO for solving “weighted” 
version of the ACLP. Section named Computational 
examples contains experimental evaluations and the 
last Section brings conclusions related to the 
research. 

2. THE ACLP FORMULATION 

The ACLP was introduced by Moon and 
Chaudhry [8]. There are few mathematical 
formulations of the ACLP proposed in literature [6, 
8]. 

Let us introduce binary variables xi defined in the 
following way: 

 




otherwise0

sitelocationfacilityabetochosenisinodeif1
xi

 
(1) 

Consider the following notation: 
i – index representing potential location sites, 
n – total number of potential location sites, 
wi – node weight (benefit associated with the use of 
location i), 
dij – the shortest distance between node i and node j, 
R – pre-specified minimal distance, 

 jiRdj iji   – nodes that are on distance 

less or equal to R, excluding particular node i, 
M – a large positive number.  
The following, original, mathematical formulation of 
the ACLP is proposed by Moon and Chaudhry [8]: 
 

 

i

ii xwZmax  (2) 

 
i,MxMx

ij
ji 


 (3) 

   i,1,0xi   (4) 
 

The objective function (2) maximizes the total 
weighted selection of the facility location sites. 
Constraints (3) are referred as Neighborhood 
Adjacency Constraints (NAC). If node i is selected 
for facility placement (i.e. xi = 1), then the term Mxi 
equals the right hand side term, M, and forces 
 
 ij

j 0x . Thus, if a site i is used, then all sites j 

within the R distance neighborhood of site i , πi, are 
restricted from use. Constraint (4) defines problem 
binary variables. 

Other mathematical formulations of the ACLP 
[6] differ from the original ACLP formulation in the 
specification of the NAC, because of the impact that 
NAC structure has on problem solvability. 

3. THE BEE COLONY OPTIMIZATION 

The Bee Colony Optimization meta-heuristic was 
introduced by Lučić and Teodorović [1, 2, 3, 4] as a 
new direction in the field of Swarm Intelligence.  

The BCO algorithm is inspired by the foraging 
behavior of honeybees. The basic plan behind BCO 
is to build a multi-agent system (a colony of 
artificial bees) that can efficiently solve hard 
combinatorial optimization problems. The artificial 
bee colony behaves similarly to bee colonies in 
nature in some ways but differently from them in 
other ways. 

3.1 The BCO algorithm  

During the evolution of the BCO algorithm 
authors developed two different approaches. The 
first approach is based on constructive steps in 
which bees build solutions step by step. The second 
approach of the BCO algorithm is based on the 
improvement of complete solutions in order to 
obtain the best possible final solution. In this paper 
we use constructive concept due to the problem 
nature. 

The BCO is a population based algorithm. 
Population of the artificial bees searches for the 
optimal solution. Every artificial bee generates one 
solution to the problem. The algorithm consists of 
two alternating phases: forward pass and backward 
pass. During each forward pass, every bee is 
exploring the search space. It applies a predefined 
number of moves, which construct and/or improve 
the solution, yielding to a new solution.  



 

4 
 

1st Logistics International Conference, Belgrade, Serbia, 28 - 30 November 2013 

Having obtained new partial solutions, the bees 
return to the nest and start the second phase, the so-
called backward pass. During the backward pass, all 
bees share information about their solutions. In 
nature, bees would perform a dancing ritual, which 
would inform other bees about the amount of food 
they have found, and the proximity of the patch to 
the nest. In the search algorithm, the bees announce 
the quality of the solution, i.e. the value of objective 
function. During the backward pass, every bee 
decides with a certain probability whether it will 
advertise its solution or not. The bees with better 
solutions have more chances to advertise their 
solutions. The remaining bees have to decide 
whether to continue to explore their own solution in 
the next forward pass, or to start exploring the 
neighborhood of one of the solutions being 
advertised. Similarly, this decision is taken with a 
probability, so that better solutions have higher 
probability of being chosen for exploration. 

The two phases of the search algorithm, forward 
and backward pass, are performed iteratively, until a 
stopping condition is met. The possible stopping 
conditions could be, for example, the maximum total 
number of forward/backward passes, the maximum 
total number of forward/backward passes without 
the improvement of the objective function, etc.   

The BCO algorithm parameters whose values 
need to be set prior the algorithm execution are as 
follows: 
B - the number of bees involved in the search and 
NC - the number of constructive / improvement 
moves.  

The pseudo-code of the BCO algorithm could be 
described in the following way:  
 

Do 
1. Initialization: a(n) (empty) solution is assigned to 
each bee.  
2. For (i = 0; i < NC; i ++ )  
//forward pass  
(a) For (b = 0; b < B; b++)  
 i) Evaluate possible moves. 
 ii) Choose one move using the roulette  
 wheel. 
//backward pass  
(b) For (b = 0; b < B ; b++)  
 Evaluate the partial/complete solution for bee b;  
(c) For (b = 0; b < B; b++)  
 Loyalty decision using the roulette wheel for bee 
 b;  
 (d) For (b = 0; b < B; b++)  
 If (b is uncommitted), choose a recruiter by the 
 roulette wheel.  
3. Evaluate all solutions and find the best one.  

while stopping criteria is not satisfied. 
 

Steps 1, 2(a) and 2(b) are problem dependent and 
should be resolved in each BCO implementation. On 
the other hand, there are formulae specifying steps 
2(c), loyalty decision, and 2(d), recruiting process, 
and they are all described in the next section in 
details. 

4. THE BCO APPROACH TO THE ACLP 

In this section, we describe our implementation 
of the BCO algorithm to be applied to the weighted 
version of Anti Covering Location Problem. In order 
to make it more interesting to logistics engineering 
audience, we choose to illustrate it on example of 
dangerous goods warehouse (in following text 
warehouse) location problem. Those facilities (for 
example: radioactive waste warehouses, explosives 
warehouses, as well as noise, odor or heat emitters, 
etc.) generate different undesirable effects that can 
be felt within certain geographical area. Making 
decisions about their spatial positions are crucial 
when it comes to minimize the environmental risk. 
Such facilities should be located under condition of 
the minimal safety distance. For some dangerous 
goods (for example some explosives) the minimal 
safety distance may be determined as constant value 
which depends only on the dangerous goods’ 
characteristics. Weights which represent the 
warehouse capacities are associated to potential 
locations.  

The objective is to maximize quantity of 
dangerous goods stored respecting the minimal 
safety distance between warehouse facilities.  

The main specificity of BCO application to the 
ACLP is in the fact that NC has to be equal to one, 
and number of located warehouses isn’t known in 
advance.  

Let us denote by Vi bee’s utility when choosing 
the node i to be a warehouse site (within a single 
forward step, each bee has to select NC=1 node). 
However, in this paper, it is assumed that there are 
two bee utility criteria, i.e. V1i and V2i, in order to 
better describe the nature of the weighted ACLP. In 
this sense, the first utility criterion is: 

 
n,...,2,1i,

NN

NN
V

minmax
i

max

i1 





 
(5) 

where: 









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 )i(j
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i

max wwmaxN  - the largest possible 

sum of nodes’ weights which are jeopardized by any 
observed location in current forward pass; 
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
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
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 )i(j

ji
i

min wwminN - the smallest possible 

sum of nodes’ weights which are jeopardized by any 
observed location in current forward pass; 


 )i(j

jii wwN  - the sum of nodes’ weights 

which are jeopardized by the i-th observed location 
in current forward pass. 

The second utility criterion is: 

 
n,...,1i,

N

w
V

i

i
i2   (6) 

We set up pi (the probability that specific bee 
chooses node i) to: 

 

n,...,1i,
T

T
p

K

1k
k

i
i 



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 (7) 

where: 
Ti - the relative closeness to the ideal solution for 
node i calculated with TOPSIS method [16] and 
with the following (empirically obtained) criteria 
weights: 0.75 for V1i and 0.25 for V2i. 
K - the number of  “free” nodes (not previously 
chosen). 

Using relation (7) and a random number 
generator, we determine the nodes to be chosen by 
each bee. 

After determining warehouse locations in current 
partial solution, it is necessary to evaluate all bees’ 
solutions. It is obviously that particular partial 
solution is better if the sum of located nodes’ 
weights is higher and vice versa. 

Let us denote by Ci (i=1,2,...,b) sum of nodes’ 
weights in the solution generated by the i-th bee. Let 
us normalize the value Ci. We denote by Oi 
normalized value of Ci, i.e.: 

 
  b,1i,1,0O,

CC

CC
O i

minmax

maxi
i 




  (8) 

where Cmin and Cmax are the minimal and the 
maximal sum of nodes’ weights obtained by all bees, 
respectively. 

After the completion of a forward pass, each bee 
decides whether it stays loyal to the previously 
discovered partial solution or not. This decision 
depends on the quality of its own solution related to 
all other existing solutions. The probability that b-th 
bee (at the beginning of the new forward pass) is 
loyal to its previously generated partial solution is 
expressed as follows: 

 B,...,1b,ep u

OO
1u

b

bmax




  (9) 

where: 
Ob -  denotes the normalized value for the objective 
function of partial solution created by the b-th bee; 
Omax - represents the maximum over all normalized 
values of partial solutions to be compared; 
u - counter of the forward passes (taking values 1, 2, 
.., NC). 

For each uncommitted bee it is decided which 
recruiter it will follow, taking into account the 
quality of all advertised solutions. The probability 
that b’s partial solution would be chosen by any 
uncommitted bee equals: 

 

R,...,1b,
O

O
p

R

1k
k

b
b 






 (10) 

where Ok represents the normalized value for the 
objective function of the k-th advertised solution and 
R denotes the number of recruiters. Using equation 
(10) and a random number generator, each 
uncommitted follower joins one recruiter through a 
roulette wheel. 

5. COMPUTATIONAL EXAMPLES 

Computational results for the BCO algorithm are 
presented in this section. All analyzed problem 
instances are generated by the authors of this paper 
and they are available upon request. The obtained 
results are presented in the Table 1. All the tests 
were performed using SciLab (version 4.0) on Intel 
Core i7 i7-4820K computer processor with 3.7 GHz 
and 4 GB of RAM. 

The proposed BCO algorithm was capable to find 
the optimal solution for all analyzed problem 
instances. The CPU times for all problem instances 
varied from 0.01 to 0.101 second. Additionally, we 
solved all tested examples by LpSolve in order to 
compare the minimum BCO CPU times needed to 
obtain the solutions with ones which were reported 
by LpSolve. LpSolve was capable to find the 
optimal solution for all analyzed problem instances 
and its CPU times varied in [0.1, 0.5] seconds 
interval. Therefore, presented numerical results 
showed that the BCO generated successful 
performances. These performances will become 
more important for a larger size networks. 
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Table 1. Results for the generic data set (20 nodes) 

Ra Db Oc BCOd Ie CPUf BCOm
g Im

h CPUm
i

50 0.076 6840 6840 1 0.001 6840 7.9 0.004 

100 0.126 6840 6840 416 0.125 6840 2403.0 0.707 

150 0.168 6789 6789 8 0.003 6789 63.7 0.021 

200 0.210 5525 5525 40 0.010 5525 8006.2 1.917 

250 0.260 5332 5332 1861 0.041 5332 17698.3 3.865 

300 0.326 5068 5068 138 0.046 5068 7932.9 1.587 

350 0.376 4855 4855 200 0.038 4855 1759.9 0.327 

400 0.421 4855 4855 181 0.034 4855 3396.9 0.591 

450 0.492 4298 4298 13 0.002 4298 5096.8 0.841 

500 0.545 4298 4298 1.5 0.101 4298 10576.1 1.617 

550 0.608 3543 3543 55 0.010 3543 19314.6 2.725 

600 0.647 3084 3084 1 0.001 3084 31.1 0.006 

650 0.690 2463 2463 1 0.002 2463 53.3 0.010 

700 0.732 2316 2316 1 0.001 2316 26.8 0.007 

750 0.774 1798 1798 8 0.002 1798 37.0 0.007 

800 0.832 1798 1798 1 0.001 1798 20.1 0.005 

850 0.868 1702 1702 4 0.001 1702 17.2 0.005 

900 0.90 1702 1702 1 0.001 1702 14.6 0.005 

950 0.953 1576 1576 1 0.001 1576 15.4 0.002 

1000 1.0 859 859 1 0.001 859 7.6 0.002 
a Pre-specified minimum distance. 
b Network density. 
c Optimal objective function value. 
d The best objective function value obtained by BCO 
using two artificial bees . 
e The minimum number of iterations (among optimal 
solutions discovered) during ten problem solving cycles. 
f The minimum CPU time in seconds (among optimal 
solutions discovered) during ten problem solving cycles. 
g The mean objective function value obtained by BCO 
using two artificial bees during ten problem solving 
cycles. 
h The mean number of iterations during ten problem 
solving cycles. 
i The mean CPU time in seconds during ten problem 
solving cycles. 

6. CONCLUSION 

The Bee Colony Optimization (BCO) meta-
heuristic is used as a tool to solve weighted version 
of the Anti-Covering Location Problem (ACLP). 
This paper represents a natural extension of our 
previous study [13], in which ‘unweighted’ ACLP 
was solved. 

For the first time in relevant literature we 
considered the multi-objective approach in order to 
determine utilities that bees have when locate a 
facility at a given node. We stated from the 
assumption that decisions related to the utility of 
facility/warehouse locations should to be made in 

the presence of trade-offs between two conflicting 
criteria. We merged these criteria using TOPSIS 
method.  

The BCO algorithm was tested on a variety of 
numerical examples. The performed numerical 
experiments show that the proposed algorithm can 
generate high-quality solutions in a reasonable CPU 
times. 
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