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Abstract: In this paper the results of the theoretically-experimental researches of the criterion of quantification of the 
superponed (superposition of two or more values to create a new, resulting activity value) flow time with two or more 
local - autonomous flows in the network diagram of PDM (Precedence Diagramming Method) type on the basis of 
Clark’s equations are presented. Computational solving of this basic variant of the general flow model through the 
network is being performed by the analytical and simulated procedures. The mathematical experiment has been 
realised by the program package Mathcad Professional. 
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1. INTRODUCTION  

 The basic model, for which Clark’s equation of 
the equivalent flow has been defined, consists of the 
oriented graph, where two activities proceed 
parallely, have common beginning and flow to one 
terminal "event" (Figure 1.). 

 

 

Figure 1. The flow network with the two locally - 
autonomous critical flows of PDM structure activity 

In that sense, the activities can be locally – 
autonomous until they are completely realized. 
However, they can be interdependent, so Clark’s 
equations were developed for that case, too [1]. In 

this work, the results of the basic Clark’s equation 
are being compared with the results of numerical 
Monte-Carlo simulation. Such basic model with 
parallel flows of activities and events has a key role 
in the network planning. Both these methods, the 
analytical, as well as the numerical one, are 
characteristic for studying various appearances and 
processes based on the network models, whether 
they are the flows of activity, resources, energy, 
mass servicing, information, technical systems, 
reliability, emission of nuclear particles etc. Those 
problems are, as experience shows us [1], of 
stochastic nature, and it is often impossible to solve 
them in an analytical way (method), without certain 
approximation. This way, one network model of the 
flows of activities is defined and solved, stimulated 
by the researches of Clark, Styke [2], Dodin [3] and 
Haga and O’Keefe [4]. That also contributes to 
developing the algorithm for solving the general 
model of the critical flows established on the row-
parallel structures of the oriented graph. In this 
analysis, the normal distribution of the endings of 
some activities with the characteristics of the 
average value and the adequate time deviation of 
their realization is superponed. 
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2. THE FLOWS WITH THE CRITICAL 
ACTIVITIES 

The uniform solution of the critical activity flow, 
and also of the resulting flow time using the 
expected times of the separate activities, presents 
one of the most troublesome effects of the network 
application planning based on stochastic methods. 
The stochastic (but also the deterministic) networks 
of activities formed e.g. on the basis of AON 
(Activity On the Node - the method of the oriented 
graphs) structure, can be very complex in some 
cases of planning. The common issues of these flows 
are: the initial and the final event and the same, 
approximately the same or different values of the 
expected time of realization of critical that is, the 
sub critical flows. The final event will be realized if 
all the critical flows that "flow into it" have been 
realized. In that case, one can rightly ask: what is the 
certainty (as well as probability distribution) that the 
resulting flow time will be completed in the planned 
period, considering that such activity graph can 
contain one, two or an unlimited number of critical 
flows, primarily of the most complex, i.e. parallel 
type. To answer this question correctly, it is 
necessary to define exactly the criteria and the 
algorithm for the quantification of impacts, primarily 
of critical and sub critical flows on forming the 
resulting, i.e. the superponed flow time activities. 

3. THE AIM OF THE PAPER 

The basic aim of this work is the quantification of 
effects of the two critical flows on forming the 
resulting, i.e. the superponed flow time. The second 
objective is setting the criterion for defining the 
equivalence () of the parallel flows. By solving it, 
we create the fundamental base for defining the 
function of probability distribution, as well as for the 
noticing of relativity of those flows by applying the 
Monte-Carlo method, as a control manner.  

4. THE BASIC TIME PARAMETERS OF THE 
AUTONOMOUS CRITICAL FLOWS 

According to the researches 1, 2, 4 the 
superposing of intervals of the critical and 
subcritical flow times and their dispersion and their 
reducing to one equivalent flow, can be calculated 
by: 

 analytical methods: - Clark’s equations for 
solving the parallel (as well as ordinal) 
flows,  

 and by numerical method – Monte Carlo 
simulation for solving the parallel and the 
ordinal flows. 

 To illustrate the application of the listed basic 
algorithms, we can use the AON network with two 
parallel flows: 1  i 2  (Figure 1). 

4.1 The superponed time and the flow variance 

In structuring the algorithm for analytical solving 
of this option of critical flows, one starts from 
Clark’s original equations. These equations solve the 
parameter flows as follows: the superponed flow 

time 2,1T  and its variances )( 2,1
2 T , in the condition 

of the non - existence of the correlation between the 
two activities. For the basic oriented graph with two 
parallel flows, from the initial (i) to the terminal (j) 
event (Figure 2) the average value of the flow time, 

2,1T  is: 

 The superponed flow time for the 
independent parallel flows: 

 )()()( 2,12,12,122,112,1   TTT    (1) 
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the parameters of Clark’s functions.  

In addition , we usually take the expected or the 
average values of time intervals: 11 T  and 

22 T  and the standard deviations )( 11 T   and 

)( 22 T  , so , according to 1, as follows: 

 The average superponed flow time: 

 )()()( 2,12,12,122,112,1     (2) 

 The superponed dispersion is presented by 
the next Clark’s equation: 

   ))() 2
22

22,11
22

12,1
2    

2
2,12,12,1212,1 )()()(     (3) 

By these equations we can describe the properties 
of one, equivalent flow instead of the previous two 
(Figure 2.). 
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Figure 2. The superponed flow of activities 

4.2  The growth of the superponed flow time in 
relation to the critical flow 

On the basis of the new superponed function of 
time distribution 2,1T  with the characteristics

],[ 2,12,1 N , the time growth 2,1T  can be quantified 

in relation to the single time 1T  or 2T  , depending on 
the fact which one of them has a critical feature. For 
the elementary network with autonomous flows 1  

and 2 , that growth or the “superponed extract“, 
after the simpler performing, is: 

    )()()( 2,1122,12,12,1        (4) 

However, in the case of a reversed choice, it 
follows: 

 )()()( 1,2211,21,21,2        (5) 

In addition to that, the nature of these values is 
always nonnegative, i.e.: 02,1   and 01,2  . 

4.3 The testing of the invariability of the flow 
model  

The testing of invariability should show us if the 
derived values remained unchanged and uniformly 
fixed when the flow order in the calculating process 
was being changed. It is well known that, when 
dealing with two flows with two parameters each, 
we can have nine relations for each flow. (Table 1). 
In other words, when analysing the following 
possible relations between the expected times and 
the deviations of single flows, as: 
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Table 1.Combination of relations of the two expected 
values and two standard deviations 





<

<

< <

= >

= = = > > >

< = > < = >
 

We can conclude that nine different combinations 
can be formed here altogether.  

1,22,1   ,   1,22,1   , 

 )()( 1,22,1     and  )()( 1,22,1       (7) 

Accepting that:  

We get the invariant relations of the basic tested 
values which are related to the superponed flow, i.e.: 

1,22,1   ; 1,22,1    and )()( 1,2
2

2,1
2 TT     (8) 

One can conclude that it is irrelevant which flow 
of the two observed will be declared as critical, and 
which one as subcritical. This invariability 
characteristic of models (4) and (5) is very important 
for developing the criterion of equivalence of w-
flows [8] ( 2w ).  

5. THE APPLICATION OF THE 
SIMULATION MODELS  

5.1  The application of Monte-Carlo method on 
models with parallel flows 

Let's suppose that the elementary activities of the 
flow time have normal distribution with the 
parameters )2,1(],,[  N . 

 

Figure 3. The distributions of probability of the 
critical, subcritical and superponed time flow  

The results of the numeric simulation of 510n  
replications for the chosen characteristics: 

]1,10[ 11  N , that is ]2,10[ 22  N  and 
the final result of simulation are presented in the 
form of the the simulated average value 

2,1m  and the 

standard dispersion 
2,1s , which generates the new 

distribution ],[ 2,12,1 smN , (Figure 3.). 

Here normal distributions are obtained with:  

 Teoretical values by Clark’s equations 

]305459,1;892062,10[ 2,12,1  N , 
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 Simulation values: 

]301344,1;891189,10[ 2,12,1  smN  and 

 Here the differences between the theoretical 
and the simulation values are: 

4
2,1 1073,8    and  3

2,1 10115,4  . 

However, as this algorithm is simply defined by 
computer, the main point of the problem is now 
oriented to the domain of simulation. In other words,  

in one session of simulation of 510n  replications, 
the testing of only one chosen variant was performed 
here, where 21    and 21    of nine possible 
variants. 

5.2 The application of Monte-Carlo method in 
solving the Clarks’s flow model 

The extension of Monte-Carlo method domain 
and the visualisation of its results can be done by 
using the frames 6. In that sense the supposition 
(6) can be solved in up to the three variants in one 
simulation session:  

21 




















     and    21   .               (9)  

The number of frames depends on the complexity 
of the problem, i.e. the process which is being 
studied, so this integrated Monte-Carlo method - 
animation (through frames) has a significant role. It 
can be partially presented by a series of selected 
frames at work [8]. 

 

Figure 4. The value frame ]1,14[ 11    

5.3 Some criteria for determining the equivalence 
of flows 

When the number of the parallel independent 
(absence of correlation) flows is 2w , then the 
criteria which are not completely universal can be 
developed, but they can be applied when the 
problem of superposition is solved analyticallly. 
Their definition can be applied in the next cases: 

 The condition of the equivalence of the two 
parallel flows is expressed on the basis of 
two parameters and three set relations 
(Figure 1): 
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  (10) 

This criterion is based on the evidence of the 
invariability of the two flows 1  and 2 . 

 Neither of 3w  parallel flows is equivalent 
in the next cases (Figure 4):  
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    (11) 

 
Figure 5. Subnetwork with three parallel flows of 
PDM structures with similar characteristics 

The complete table of the relational operators for 
the three parallel flows with all the relational 
combinations of the expected values )3,2,1(   
and adequate standard deviations   is given in 

Table 2.  
The number of combinations of the superponed 

flows u for the greater number of the elementary 
flows w, is of the exponential characters and is: 

 Nwwu w   ,23 1 .                  (12) 
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Table 2.Combination of relations of the three expected 
values and three standard deviations 

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 The equivalence of the w - parallel flows is 
realized when the following conditions are 
fulfilled (Figure 5): 
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Figure 6. The subnetwork with w - parallel flows 

In that sense one can observe these flows as one 
equivalent flow with the characteristic: 

 
Figure 7. The subnetwork with one equivalent flow 

According to the previous criteria, only one case 
fulfills the condition of equivalence which is given 
in bold in the table 2. In the paper [5] it is shown 
how the equivalent superponed flows integrated with 
the ordinal flows are formed. 

 

6. CONCLUSION 

The most significant advantage of Monte-Carlo 
simulation method in solving this flow problem 
through the network is the possibility of modelling  
of the probability distribution function for the 
superponed flow time of the basic network model, 
given in figure 1. However, the advantage of Monte-
Carlo simulation method is substantially increased 
on the account of possible dynamic modeling of the 
flow through the network. The frames made by 
scanning in the Mathcad provide more reliable basis 
for further acquiring and expanding of knowledge in 
this field, especially in relation to the relativity of 
the critical flow. We can perform the time planning 
of the critical flows with more credibility when 
using the combined procedures: analytical Clark’s 
equations and numerical Monte-Carlo simulation 
than when achieving it by the standard procedures of 
network planning and managing, e.g. through PDM 
(Precedence Diagramming Method). With the 
classical PDM, the flow time planning is established 
on the expected values of the elementary flow times, 
which leads to a considerable mistake in planning, 
since the influence of the subcritical flows on 
forming the total superponed flow time is, in 
principle, neglected and super- positioned extracts 
  and   are reduced to zero. It can be proved 

that, in the flow network with ten critical flows of 
the autonomous type, the resulting flow time 
increases by 11% from the time one should get when 
calculating by the PDM method. This "mistake in 
planning", as a theoretical result also verified by 
simulation for the two parallel flows, is %92,8 . 
The result obtained in this way is not uniform, but it 
depends on the chosen value pairs of the numerous 

],[:   ),...2,1( w . Of course, it is possible 
to examine the remaining cases, too, through 
analytical and / or numerical methods, e.g. when we 
set the vector of the expected values and of the 
corresponding standard deviations in the next effect: 

1

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
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












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


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











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   for 1,1  w   (14)  

These influences (Figure 6 and 7) can 
exceptionally be noticed 2, 8 by simulation at 
more complex ADM (PDM) networks. When the 
more complex flows are calculated (Figure 8), 
analytically or by simulation and respecting the 
developed criteria, one gets interesting values, 
because here the networks with both the ordinal and 
parallel flows are comprised. Example, for the initial 
information: 

100   and  10   for  7...,,2,1 . 
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 The analytical results are: 

]16232,14;4086,413[  N , 

 The numerical results are: 
 

]17712,14;3794,413[  smN . 

 
Figure 8. The network with ordinally parallel flows 
and its equivalent  

The consequences of not knowing the essence of 
the obtained results can be very problematic, 
especially in the cases of planning and controlling 
the complex stochastic flows of activities through 
the network. Clark's equations for four and more 
parallel flows were not developed. If they were 
performed, they would lead to the very complex 
equations. However, the existing equations for two 
or three parallel flows can be used for solving even 
the more complex cases of flows ( 3w ). Then they 
are used as recurrent. For wth iteretion, the 
superposing of the flow 112  w  and w  into the 

flow ww ,112    gives the following results: 
 

  The expected superponed flow time wwT ,112   is: 
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 The superponed dispersion 2
,112 ww  is: 
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Note: The underlined values are the expected or 
the average values of the arguments. 

Because of the presences as well as of the ordinal 
flows, the mathematical and simulation models 
should be completed with the results of the central 
limit theorem [7]. 

More importance of the research results are: 

a) Provided a new approach to studying the 
impact of parallel flows in the resulting 
production flow. 

b) Introduced a superponed flow, and defines 
his time and variance, which are the basic 
parameters for sizing the intralogistic’s 
capacity. 

c) Very credible be determined the time of the 
schedule implementation during  process. 

d) Created the basis for measuring risk that a 
particular course will not be realized within 
the planned time. 

e) The significance of the relativity of the 
critical and subcritical flow. 

The directions of further researches can be added. 

a) The solving of the Clark’s more complex 
model when two parallel activities are 
correlated. 

b) The development of Clark’s analytical 
model with three or more parallel flows into 
one equivalently-superponed flow. 
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