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Abstract: A Competition model involves situations where two or more entities (companies) 
compete with the purpose of gaining market share. In a region with a certain spatial 
structure we consider spatial competition models, and such location-allocation models fall 
under the game theory. The paper focuses on modeling such a situation when two competing 
companies offer identical goods on the market, but the price of these goods may vary. These 
companies are deciding where to build their operations. The cost of the customer includes 
both the price of the goods and the transport costs. However, the regulator also enters into 
the game with a preference of a specific location in order to support a local economy, reduce 
negative environmental impacts, etc. As a result, customers can be divided into different 
groups. One group consists of myopic customers who only consider their own costs, whilst 
the second group includes customers who follow regulator recommendations and buy only 
in the preferred location. The third group consists of customers who change their behavior 
based on their maximum cost. 

Keywords: Spatial competition, regulator preference, game theory 

1. INTRODUCTION

The paper is focused on location-allocation models that are parts of spatial competition 
models. We will model the location of two competing companies offering an identical 
product at different prices in a geographically determined market. The first known 
models are associated with the name of Hotelling (Hotelling, 1929). However, Hotelling 
considered the location along the line and we will extend these considerations by adding 
a spatial structure that can be described as a graph. We will further extend the model by 
situation where a regulator wants to actively intervene and prefer the operations at a 
particular location. Obviously, the regulator's preference does not always depend solely 
on economic benefits, but may be a purely political decision to support certain areas. 

The easiest way to take into account node preference would be to regulate the price (some 
form of subsidy or penalty). However, we will consider also the company's awareness and 
suppose that some customers will follow the regulator's recommendation and buy at the 
preferred node, thereby increasing demand at that node. Thus, a society (consumers) can 
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be divided into two groups. In the first case, consumers are considered to be myopic 
(short-sighted), that is, they are unaware of the damage that occurs when purchasing 
goods (and building an establishment) at a location other than the designated location. 
Such behaviour can cause negative externalities because of, for example, higher traffic 
loads, which causes higher pollution of the entire area and not just at a given location. If 
the regulator's preference for a given node is to support local manufacturers or suppliers, 
ignoring preferred nodes can have a negative impact on the economic situation of the 
entire region. 

One of the major factors in preferred areas is the application of conscious zoning 
(Sequeira Lopez, 2018). Zoning is used as a way to isolate negative externalities (such as 
pollution) outside public areas or in the case of product (service) support in the preferred 
area (Pekár  J. et all, 2012). On the other hand, customers who follow the 
recommendations of the regulator support the local economy and can also generate a 
lower negative impact on the environment. 

The regulator assumes that the market will be divided among conscious and unconscious 
customers. In this case, conscious customers will buy in the preferred node. Demand of 
unconscious customers will be shared between the preferred and non-preferred node. 

We will solve this situation within the game theory models and in the simplest case it is 
possible to formulate a game with a constant sum. Therefore, we will introduce the basic 
formalization of such a game. 

2. TWO-PLAYER GAME WITH CONSTANT SUM

A two-player game with constant sum can be described as follows: 

Let 𝑃 = {1,2} be a set of players. Each player has a finite set of strategies (𝑋 – player 1, 𝑌 
– player 2}, i.e. player 1 chooses 𝐱𝑋, player 2 chooses 𝐲𝑌, then (𝑥, 𝑦) ∈ 𝑋x𝑌 is set of
all results of the game (𝑥, 𝑦) ∈ 𝑋x𝑌. The individual elements of the sets 𝑋 and 𝑌 can be 
arranged by a finite number of non-negative numbers (elements of the set 𝑋: 𝑖 = 1,2, …𝑚 
and elements of the set 𝑌: 𝑗 = 1,2, … 𝑛) and the results of the game for player 1 can be 
indicated in the matrix 𝐀𝑚x𝑛 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 indicates the player's payoff at the 

result (𝑖, 𝑗).  The values of the game for player 2 can be indicated in the matrix 𝐁𝑛x𝑚 =
{𝑏𝑗𝑖}, where 𝑏𝑗𝑖  indicates the player's payoff at the result (𝑗, 𝑖). The constant sum can be 

characterized as follows: 𝐁𝑛x𝑚 = 𝐂𝑛x𝑚 − 𝐀𝑚x𝑛
T , where 𝐂𝑛x𝑚 = {𝑐} with 𝑐 being the

constant independent of the strategy choice. 

The aim is to identify equilibrium strategies for both players. The status is defined as 
equilibrium, if the system has a tendency to remain in such state under certain conditions 
(only such set of strategies can be considered as a satisfactory result, if any effort to 
unilaterally violation automatically leads to damage to a player attempting to do so). 

Game solutions are based on the following assumptions: Both players have complete 
information about the model of the conflict situation, i.e. they know the payoff matrix 
𝐀𝑚x𝑛 = {𝑎𝑖𝑗}, players are intelligent, i.e. the players want to maximize the payout and 

know that so does the opponent, the players are careful, i.e. they try to minimize the risk. 
The solution to the game results in identifying the equilibrium point in pure strategies 
(saddle point of matrix A) or in mixed strategies (Chobot et al, 1991). (Goga, 2013), 
(Dlouhý, 2007).  
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The mixed strategy of player 1 is the 𝑚-dimensional vector 𝑥,  𝑥𝑖
𝑚
𝑖=1 = 1, 𝑥𝑖 ≥ 0, 𝑖 =← 𝑉 

and the mixed strategy of player 2 is the 𝑛-dimensional vector𝑦,  𝑦𝑗
𝑛
𝑗=1 = 1, 𝑦𝑗 ≥ 0, 𝑗 ←

𝑉. Mixed strategies can then be identified using simple linear programming problem 
(Chobot et al, 1991).  

3. SPATIAL COMPETITION MODEL WITH REGULATORY INTERVENTION

The spatial game is based on the following assumptions: Let 𝑉 = {1,2, … 𝑛} is a set of 
customers and let be given a finite continuous oriented edgewise-rated graph 𝐺 =
 (𝑉, 𝐻), where 𝑉 represents a non-empty 𝑛-element set of graph nodes, and 𝐻 ⊂ 𝑉𝑥𝑉 
represents a set of edges ℎ𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑉 from the i-th to j-th., with each oriented edge 

ℎ𝑖𝑗  being assigned a real number 𝑜(ℎ𝑖𝑗) called a valuation or also the edge value of ℎ𝑖𝑗 . The 

network game is formulated in a so-called complete or a complete weighted graph �̅� =
(𝑉, �̅�) with the same set of nodes as graph 𝐺, where �̅� is the set of edges between each 
pair of nodes 𝑖 and 𝑗, their valuation being equal to the minimum distance between the 
nodes 𝑖 and 𝑗 in the original graph 𝑖, 𝑗 ∈ 𝑉. If 𝑑𝑖𝑗  represents the minimum distance (the 

shortest path length) between nodes 𝑖 and 𝑗, then the matrix 𝐃𝑛x𝑛 = {𝑑𝑖𝑗} is the shortest 

distance matrix. 

Let´s assume two companies (players), 𝑃 = {1,2} offering a homogeneous product (goods 
or service) that have the ability to build their operations in one of the nodes of graph 𝐺.̅ 
Suppose the nodes of graph also represent the seat of the customers with constant 
demand. Although both players offer an identical product in an unlimited amount, the 
product price is different. Let us denote 𝑝(1) the product price for player 1 and 𝑝(2) the 
product price for player 2. We do not consider any capacity limitations; every customer 
can buy a product at any company. Customers, however, take into consideration the total 
price of the product consisting of both the purchase price of the product and the price of 
the transport to a chosen company. Transport costs are rated as 𝑡/unit of distance. The 
aim is to identify those nodes in which companies build their operations, assuming mutual 
interaction, and it is known that customers always prefer lower cost purchases (in case of 
equal costs, companies will split demand in half). The model taking into account the above 
assumptions was presented in (Sequeira Lopez & Čičková, 2018). In this way, the cost of 

the consumer of purchasing at company 1 can be written in a matrix 𝐍(1)   =  {𝑛𝑖𝑗
(1)
}, 𝑖, 𝑗 ∈

𝑉 with elements are defined as follows: 

 𝑛𝑖𝑗
(1) = 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(1), 𝑖, 𝑗 ∈ 𝑉 (1)

Analogical for the player 2 we specify the matrix 𝐍(2)   =  {𝑛𝑖𝑗
(2)}, 𝑖, 𝑗 ∈ 𝑉:

𝑛𝑖𝑗
(2) = 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(2), 𝑖, 𝑗 ∈ 𝑉 (2) 

Now, consider the influence of the regulator, which aims to actively increase interest in a 
particular node. The models are further expanded to include situations where the 
regulator wants to actively disable or reduce consumption at a specific node. The 
regulator may interfere by affecting the price at a given node through a fine or penalty at 
the node where the location of the establishment is undesirable from its perspective. 
Thus, the total cost to the consumer at a given node is increased, provided that the 
company takes these measures into account in the price of the product, that is, they 
increase the product price by the amount of the regulator's sanction.  
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Let´s introduce a parameter 𝜆 ∈ (0,1) that represents awareness of the society. It means 
that 𝜆 % of the society will be aware and will follow the preferences of the regulator (will 
purchase in preferred location) regardless its own costs. Let´s denote a preferred location 
as 𝑝𝑟𝑒𝑓 ∈ {1,2, … 𝑛}. Then, the myopic consumers are represented by 1 − 𝜆. 

Then it is possible to define the elements of the payoff matrix of player 1 (𝐀) in the form 
of the following pseudo code: 

𝐒𝐄𝐓 𝐏𝐀𝐑𝐄𝐌𝐄𝐓𝐄𝐑𝐒 𝑉 = {1,2, … 𝑛}, 𝑫𝑛𝑥𝑛 = {𝑑𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑉 , 𝑡, 𝑝
(1), 𝑝(2), 𝜆 ∈ (0,1),  

𝑝𝑟𝑒𝑓 ∈ 𝑉 

𝐃𝐄𝐂𝐋𝐀𝐑𝐄 𝑁𝑛∗𝑛
(1)
= {𝑛𝑖𝑗
(1)
}, 𝑖, 𝑗 ∈ 𝑉; 𝐴𝑛∗𝑛{𝑎𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑉; 

𝐋𝐎𝐎𝐏 (𝑖, 𝑗 ∈ 𝑉) 𝐃𝐎 

𝑛𝑖𝑗
(1)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(1); 

𝑛𝑖𝑗
(2)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(2); 

𝑎𝑖𝑗 = 0; 

𝐋𝐎𝐎P (𝑘, 𝑖, 𝑗 ∈ 𝑉) 𝐃𝐎 

IF 𝑛𝑘𝑖
(1)
<  𝑛𝑘𝑗
(2)

 and  𝑖 = 𝑝𝑟𝑒𝑓 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 1;  

ELSEIF  𝑛𝑘𝑖
(1)
<  𝑛𝑘𝑗
(2)

and 𝑖 ≠ 𝑝𝑟𝑒𝑓 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + (1 − 𝜆);     (3) 

ELSEIF  𝑛𝑘𝑖
(1)
>  𝑛𝑘𝑗
(2)

 and 𝑗 = 𝑝𝑟𝑒𝑓 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜆; 

ELSEIF  𝑛𝑘𝑖
(1)
=  𝑛𝑘𝑗
(2)

 and 𝑗 = 𝑝𝑟𝑒𝑓 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜆 + 0,5(1 − 𝜆); 

ELSEIF  𝑛𝑘𝑖
(1)
=  𝑛𝑘𝑗
(2)

 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 0.5; 

ENDIF 

Obviously, under the given assumptions, it is possible to formulate a game with a constant 
sum, where the constant of the game 𝑐 =  𝑛 (since players share a constant demand of 𝑛 
nodes) and elements of matrix B can be calculated as 𝐁𝑛xn = 𝐂𝑛xn − 𝐀𝑛x𝑛

T , where 𝐂𝑛xn =
{𝑐}.  

Now, consider the maximum difference cost that the consumer is willing to spend on the 
goods. Let´s denote such maximum difference cost as TMAX. Then, the demand is shared 
between the preferred and non-preferred node based on maximum difference costs, and 
the conscious consumer will also shop at the non-preferred node if the total preferred 
node purchase cost exceeds TMAX.  

Then it is possible to define the elements of the payoff matrix of player 1 (𝐀) in the form 
of the following pseudo code: 

𝐒𝐄𝐓 𝐏𝐀𝐑𝐄𝐌𝐄𝐓𝐄𝐑𝐒 𝑉 = {1,2, … 𝑛}, 𝑫𝑛𝑥𝑛 = {𝑑𝑖𝑗}, 𝑡, 𝑝
(1), 𝑝(2), 𝜆 ∈ (0,1), 𝑝𝑟𝑒𝑓 ∈ 𝑉, 𝑇𝑀𝐴𝑋 

𝑁𝑛∗𝑛
(1)
= {𝑛𝑖𝑗
(1)
}, 𝑖, 𝑗 ∈ 𝑉; 𝐴𝑛∗𝑛{𝑎𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑉; 

𝐋𝐎𝐎𝐏 (𝑖, 𝑗 ∈ 𝑉) 𝐃𝐎 
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𝑛𝑖𝑗
(1)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(1);

𝑛𝑖𝑗
(2)
= 𝑡 ∗ 𝑑𝑖𝑗 + 𝑝

(2);

𝑎𝑖𝑗 = 0; 

𝐋𝐎𝐎𝐏 (𝑘, 𝑖, 𝑗 ∈ 𝑉) 𝐃𝐎 

𝐈𝐅  𝑛𝑘𝑖
(1)
<  𝑛𝑘𝑗
(2)
𝐚𝐧𝐝  = 𝑝𝑟𝑒𝑓 𝐃𝐎 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 1; 

𝐄𝐋𝐒𝐄𝐈𝐅  𝑛𝑘𝑖
(1) <  𝑛𝑘𝑗

(2)𝐚𝐧𝐝 𝑖 ≠ 𝑝𝑟𝑒𝑓 

𝐚𝐧𝐝 (𝑛𝑘𝑗
(2) −  𝑛𝑘𝑖

(1)) ≤ 𝑇𝑀𝐴𝑋𝐃𝐎 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + (1 − 𝜆);    (4) 

𝐄𝐋𝐒𝐄𝐈𝐅  𝑛𝑘𝑖
(1) >  𝑛𝑘𝑗

(2) 𝐚𝐧𝐝  𝑖 = 𝑝𝑟𝑒𝑓 

𝐚𝐧𝐝 ( 𝑛𝑘𝑖
(1) − 𝑛𝑘𝑗

(2)) ≤ 𝑇𝑀𝐴𝑋 𝐃𝐎 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜆;

ELSEIF  𝑛𝑘𝑖
(1)
=  𝑛𝑘𝑗
(2)

 and 𝑗 = 𝑝𝑟𝑒𝑓 DO𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜆 + 0,5(1 − 𝜆); 

𝐄𝐋𝐒𝐄𝐈𝐅  𝑛𝑘𝑖
(1)
=  𝑛𝑘𝑗
(2)
 𝐃𝐎 𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 0.5; 

ENDIF 

In the next section, we will illustrate this approach by solving illustrative examples. 

4. EXAMPLES

Let’s assume the existence of five potential customers 𝑉 = {1,2,3,4,5}, each of them is 
located in the unique node of a graph 𝐺. We also assume the form of a duopoly market 
where each of the companies can build a branch office in any node of this graph          𝑖 ∈ 𝑉 
. Each player (company) aims to maximize the number of nodes that are served. Although 
both players offer a homogeneous product, its price is 𝑝(1)= 1 for player 1 and 𝑝(2)= 1.1 
for player 2. Let consider the following weighted graph in figure 1: 

Figure1. Graph of distances between nodes 
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Let the shortest distance matrix 𝐃 = {𝑑𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑉 between all the nodes of the network 

are represented by the shortest distance matrix for ours five nodes. 

𝐃 =

[
 
 
 
 
0 7 6 7   11
7 0  6 14 11
6
7
11

6
14
11

0
9
5

9
0
13

5
13
 0 ]
 
 
 
 

 

 

We assume unit transport costs 𝑡 = 1, Let´s suppose the regulator prefers the node 3, let’s 
say the parameter 𝜆 ∈ (0,1) is 0.4, i.e. 40% of the population will follow the regulator 
strategy. Based on (1) and (2) it is possible to quantify matrix elements N(1) and N(2) as 
follows: 

𝐍(𝟏)

[
 
 
 
 
1 8 7  8   12
8 1 7 15 12
7
8
12

7
15
12

1
10
6

10
1
14

6
14
1 ]
 
 
 
 

 and matrix  𝐍(𝟐)

[
 
 
 
 
1.1 8.1 7.1  8.1   12. 1
8.1 1.1 7.1   15.1 12. 1
7.1
8.1
12.1

7.1
15.1
12.1

1.1
10.1
6.1

10.1
1.1
14.1

6.1
14.1
1.1 ]
 
 
 
 

 

 

We assume the regulator set the same weight to all other nodes (3), i.e. the node 4 will be 
tree time more attractive for the followers of the regulator. 

If we do not consider lost demand, it is possible to quantify the elements of matrix A for 
player 1 as follows: 

𝐀 =

[
 
 
 
 
3 2.4 1.2 2.4 1.8
1.8 3 0.6 2.4 1.2
3.8
0.6
1.2

4.4
1.2
1.8

5
0.6
0.6

4.4
3
1.8

4.4
1.2
3 ]
 
 
 
 

 

 

Since matrix A has a saddle point, there is only one solution to the game. The strategy of 

player 1 is represented by the vector: 𝐱(0) = (0; 0; 1; 0; 0), i.e. the player 1 should invest 
in node 3 as the regulators prefers. The strategy of the player 2 is represented by the 
vector 𝒚(0) = (1; 0; 0; 0; 0). As we can see, the player 2 in reaction of the action of player 
1 should invest in node 1.  

Obviously, the constant of this game is 𝑐 = 5  , the value of the game is 3.8 for player 1 (3.8 
serviced nodes) and the value of the game for player 2 is  c −  3.8 =  5 − 3.8 =  1.2 (3 
serviced nodes). 

As a result, we can conclude that if the player 1 invests all capital in node 3 following the 
strategy of the regulator, he could take 3.8 node of five.  

Let´s set maximum purchase price differences of the product Tmax  =  1. The calculations 
are based on (4). In such case, if the total price (transport cost and product price) is lower 
or equals to 2 MU, and the player 1 is located in preferred node, the player 1 takes all 
demand from the preferred node plus 𝜆 ∈ (0,1) of other nodes. In our case, the awareness 
level is 𝜆 = 0.4. It means that 40 % of all nodes follow the regulator and purchase in 
preferred node. On the other hand, if the player 1 is located in any node other than the 
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preferred one and the total price differences is lower or equals to 1 MU, the player 1 only 
takes 1 − 𝜆 of the demand of such node.  

The regulator prefers the node 3 as in previous example and we assume that 𝜆 ∈ (0,1) is 
0.40. 

Preserving the previous prepositions matrix A is as follows: 

𝐀 =

[
 
 
 
 
3 1.2 0 0  0
1.2 3 0  0 0
3
0
0

4
0.6
0

5
0
0

4
3 
0

4
0
3]
 
 
 
 

 

Since matrix A does not have a saddle point, we search for a solution to the game in mixed 

strategies.  The mixed equilibrium strategy of player 1 is represented by the vector:  𝐱(0) =
(0.25; 0; 0.75; 0; 0), i.e. the player 1 should invest in node 3, (around 75% in this location), 
the other good investment could be in node 1 with 25%. The reaction of the player 2 is 
represented by the vector y(0) = (1; 0; 0; 0; 0) as we can see; the player 2 in reaction of 
the action of player 1 should invest in node 1. The value of the game is 3 for player 1 (3 
serviced nodes) and value of the game for player 2 will be 𝑐 −  3  =  5 − 3 =  2. (2 
serviced nodes). 

As we can see in this illustrative example, the participation of the regulator changes the 
strategy of player 1 and has an impact on the value of the game. In examples above we 
assumed unit demand. In case the calculations are extended to include real demand 
represented by the number of people living in a specific area, the impact of the regulator´s 
preferred node of the network will be more significant. By adding a parameter of different 
demand in various nodes, the game would change to a non-constant sum game. Solving 
such types of games can be found in (Čičková & Zagiba, 2018) 

The games are formulated as a linear programming problem solved with GAMS (solver 
CONOPT 3 24.9.2 r64480). 

5. CONCLUSION  

Game theory can be used to solve them specific problem of spatial competition. Our paper 
is focused on the case where a regulatory entity is involved in the game. The problem is 
formulated for duopoly (on the supply side). The issues are analyzed in the transport 
network with individual buyers located in the individual nodes of such network. The 
sellers decide on their position while trying to respect the behavior of buyers who 
minimize both the costs associated with the transport price and the transport costs. The 
buyers react to the strategy of the regulatory entity; in this case also the sellers are bound 
to follow that. It is obvious that if the level of follower of the regulatory entity is high 
enough, the sellers will set up their branches in the same nodes as preferred by the 
regulator. If that percentage decreases or is almost zero or there is not a regulator, it is 
the situation formulated in (Sequeira Lopez & Čičková, 2018). The GAMS professional 
software, which ranks among the powerful optimization computing environments, was 
used to solve the games mentioned above. 
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