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Abstract: Rail freight transport is one of the most preferred modes of green transport since 
it emits three times less CO2 and particulates per ton-mile than road transport. Train energy 
consumption is the biggest issue related to rail traction costs. Data about freight trains 
energy consumption per year are not possible to define precisely, so it is convenient to use 
fuzzy logic as a tool for data prediction. In order to predict it, we provide Wang - Mendel 
method for combining both numerical and linguistic information into a common framework 
– a fuzzy rule base. Relevant input variables are: freight train kilometers, average freight
trains weight and non-productive kilometers. The output variable from the defined fuzzy 
logic system is average energy consumption per year for rail freight transport. The proposed 
model is applied and tested on real data collected in the Republic of Serbia.  
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Mendel method; Fuzzy rules. 

1. INTRODUCTION

The term green logistics represents all efforts to manage and minimize the ecological 
impact of logistics activities. The main aim of this concept is moving and delivering goods 
with the lowest cost, but with the highest standards and minimal environmental impact. 

In that sense, rail freight transport is one of the most preferred modes of transport since 
it emits three times less CO2 and particulates per ton-mile than road transport. Besides 
these ecological benefits, rail transport is the most cost-effective mode of transport.  

Rail transport gives the most important contribution to the green logistic concept, 
compared to all transport modes, because it is the least harmful to the environment. Table 
1 shows date given in the studies for the years 2000 and 2008. In both studies, rail freight 
transport has the lowest external costs. One can notice that all modes of transport 
significantly decreased external cost in 2008 compared with the cost in 2000.  
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Table 1. Average external costs - EU-27 Member States (Periods: 2000 and 2008) 
[€/tonne km] 

  

INFRAS/IWW, 2004 CE/INFRAS/ISI, 2011 

for 2000 for 2008 

HDV 71.2 34 

Road freight total 87.8 50.5 

Rail freight 17.9 7.9 

Inland waterways 22.5 11.2 

Data source: CE Delft, Infras, Fraunhofer ISI, 2011 

 
Figure 1 shows a comparison of the external cost road and inland waterway modes of 
transport with the external cost of rail transport. Figure 1 gives a ration of these costs. 
One can notice that ration for HDV (heavy duties vehicles) is increased from 3.98 in 2000 
to 4.3 in 2008. The biggest difference in the rations is for road freight total (from 4.91 in 
2000 to 6.39 in 2008). Rations for inland waterways are the smallest in the both years 
(1.26 in 2000 and 1.42 in 2008). Figure 2 gives a structure of external costs in 2008. 

 

Figure 1. Average cost ration compared to rail (freight transport)  
Data source: CE Delft, Infras, Fraunhofer ISI, 2011 

Table 1 and Figures 1 and 2 show the advantages of the railway transport mode, which 
lead to an evident growth in rail freight logistics such as: cheap transport when compared 
to other modes of transport; more efficient as it allows larger volume of cargo transport 
to long distances; the transport of goods by train reduces the amount of fuel and 
emissions; the rail transport is considered to be six to seven times more efficient than 
road transport and reduces emissions by ~30-70%. The road transport is still dominant 
mode of transport in most of the countries around the world. However, some facts 
(increasing road congestion, costs, and emissions of CO2) change the focus toward the 
railway transport. 
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Figure 2. Structure of external costs (freight transport for 2008) 
Data source: CE Delft, Infras, Fraunhofer ISI, 2011 

The objectives of UIC (The International Union of Railways) are the rail share of freight 
land transport to be equal with the road and reducing specific average CO2 emissions from 
train operations by 50% reduction by 2030. A consequence of these objectives is the 
energy consumption increasing. Train energy consumption is a basic and the biggest issue 
related to the rail traction costs. Data about freight trains energy consumption per year 
are not possible to define precisely, so it is convenient to use fuzzy logic as a tool for data 
prediction. In a defined problem, fuzziness appears due to the lack of ability of exactly 
predicting certain values.  

In this paper, the model for train energy consumption prediction is developed. In order to 
forecast freight train energy consumption per year, we provide Wang-Mendel method for 
combining both numerical and linguistic information into a common framework – a fuzzy 
rule base. Relevant input values are: freight trains kilometres, average freight trains 
weight, non-productive kilometres. The output value from a defined fuzzy logic system is 
average energy consumption per year for rail freight transport. The proposed model is 
applied and tested on real data collected in the Republic of Serbia. 

The paper is organized as follows. After Introduction, in Section 2, brief literature review 
is given. The developed model for determination of electric energy consumption for 
freight trains traction is presented in Section 3. Section 4 is dedicated to the case study, 
i.e. to the application of presented model on Serbian railway network. Last Section 
presents conclusions and future research directions.   

2. BRIEF LITERATURE REVIEW

Wang Mendel method generates fuzzy rules from examples. Giving the literature review 
of the fuzzy systems in the transportation fields, Teodorović (1999) referred several 
papers with Wang Mendel method applications. Teodorović (1999) emphasized that 
Wang Mendel method represents a nonlinear mapping, with the possibility to 
approximate any real continuous function to arbitrary accuracy. Wang (2003) extended 
this method to enhance the practicality. The author presented the approach for ranking 
the importance of input variables and proposed an algorithm for solving pattern 
recognition problems. Chen et al. (2007) emphasized that Wang Mendel rule generation 
method is the one of the earliest algorithms, but with one disadvantage. This method 
selects the rules with the maximum degree, without taking into consideration other 
conflicting rules. The authors compared three methods, and the main conclusion of the 
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paper is that the weighted mean method has the best robustness and error-tolerance, 
consequently this approach is suitable for extracting rules from the real data with noise. 
The results obtained by Yanar and Akyurek (2011) indicated that Wang Mendel method 
provides better starting configuration for simulated annealing compared to fuzzy C-
means clustering method. 

Wang Mendel method was used for energy consumption forecasting in Jozi et al. (2017). 
Results showed that the proposed method using the combination of energy consumption 
data and environmental temperature is able to provide more reliable forecasts for the 
energy consumption than several other methods experimented before, namely based on 
artificial neural networks and support vector machines. Authors Yang et al. (2010) 
presented an improved Wang Mendel method for electric load forecasting. They 
combined this approach with particle swarm optimization.  

3. MODEL FOR PREDICTION OF ELECTRIC ENERGY CONSUMPTION FOR FREIGHT
TRAINS TRACTION 

Electric energy consumption for freight trains traction depends on various parameters 
such as: the utilization factor of the overhead line and the electrical substations, the power 
of the locomotive, the corrected virtual coefficient, train speed, the length of the section 
and the specific electric energy consumption per power. Since we do not have access to 
all these data, we apply Wang-Mendel method (Wang and Mendel, 1992) on the data 
which are available. 

In order to predict the consumption of electric energy for the traction of freight trains on 
an annual basis, we take into account the following: 

• Input variables:

1. Trains kilometres -TK [km] - It represents the number of kilometres that all electric
locomotives passed by hauling freight trains, during one year. The greater the number
of kilometres travelled, the greater the consumption of electric energy. Data are given
annually.

2. Average weight of trains - AWT [tonne] - It provides information on how much a freight
train is loaded on average. Electric locomotive hauling heavy freight trains consumes
more electric energy. Data are given annually.

3. Non-productive kilometres - NPK [km] - The number of kilometres travelled by electric
locomotives when they are out of the traction, or when they are not at the front of a
train. Data are given annually.

• Output variable:

1. Average energy consumption - AEC [kWh] - It represents the amount of electric energy
consumed by all the locomotives while they performed freight trains traction. Data are
given annually.

For the implementation of Wang-Mendel model, it is necessary to have appropriate 
numerical data about the input and output variable (Table 2). As it can be noticed each set 
of desired input-output data is given in the form of:  {(x1(1), x2(1), x3(1); y(1)), (x1(2), x2(2), x3(2); 
y(2)), …, (x1(8), x2(8), x3(8); y(8))} . 
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Table 2. Values of input and output variables, in the 2007-2014 period† 

Year TK AWT NPK AEC 

2007 4 909 390 943 957 821 132 722 827 

2008 6 890 035 1018 973 953 172 117 737 

2009 6 547 541 1150 1 044 119 153 103 010 

2010 5 091 884 998 841 230 114 569 156 

2011 5 152 954 1100 690 245 118 585 848 

2012 4 057 087 971 761 418 92 500 913 

2013 4 628 479 912 693 911 110 200 700 

2014 5 851 905 840 995 357 112 093 124 

In the first step of Wang Mendel method, input and output spaces are divided into fuzzy 
regions. Assume that the domain intervals of x1, x2, x3 and y are [x1-, x1+], [x2-, x2+], [x3-, x3+] 
and [y-, y+], respectively. We divide each domain interval into 2N+1 regions (N may vary 
from variable to variable) and assign each region a fuzzy membership (Table 3).  

Table 3. Variable domains 

Variable Domain 

Trains kilometres [3.5, 7]‡ 

Average weight of trains [700, 1300]§ 

Non-productive kilometres [500, 1200]** 

Average energy consumption [80, 180]†† 

The domain division for the variable “Trains kilometres” has been done into 3 fuzzy sets 
(Figure 3): 

• Small [3.5, 3.5, 4, 5] - represents a small volume of the freight train kilometres.
• Medium [4, 5, 6] - represents a medium volume of the freight train kilometres.
• Large [5, 6, 7, 7] - represents a large volume of the freight train kilometres.

† data collected in the Republic of Serbia. 
‡ domain is expressed in million km. 
§ domain is expressed in tonnes.
** domain is expressed in thousand km. 
†† domain is expressed in million kWh. 
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Figure 3. Membership functions of “Trains kilometres” fuzzy variable  

The domain division for the variable “Average weight of trains” has been done in same 
way. Domain division is shown in Figure 4: 

• Light [700, 700, 800, 900] - represents a light weight of freight trains. 
• Medium [800, 100, 1200] - represents a medium weight of freight trains. 
• Heavy [1100, 1200, 1300, 1300] - represents a heavy weight of freight trains. 

 

Figure 4. Membership functions of “Average weight of trains” fuzzy  

For the variable “Non-productive kilometres” domain has been divided in three fuzzy sets 
(Figure 5): 

• Small [500, 500, 600, 800] - represents a small amount of non-productive 
locomotive kilometres. 

• Medium [600, 800, 1000] - represents a medium amount of non-productive 
locomotive kilometres. 

• Large [800, 1000, 1200, 1200] - represents a large amount of performed non-
productive locomotive kilometres. 

 

Figure 5. Membership functions of “Non-productive kilometres” fuzzy variable  
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Finally, it is necessary to cover a domain for “Average energy consumption” fuzzy variable 
(Figure 6) with the membership functions. The division has been carried out on 5 
intervals. 

• Very low [80, 80, 100] - represents a very low energy consumption.
• Low [90, 100, 120] - represents a low energy consumption.
• Medium [100, 120, 140] - represents a medium energy consumption.
• High [120, 140, 160] - represents a high energy consumption.
• Very High [140, 160, 180, 180] - represents a very high energy consumption.

Figure 6. Membership functions of the output variable “Average energy consumption” 

In the next step of Wang-Mendel method, the generation of the fuzzy rules should be done, 
based on numerical data. For each of the input-output pair, it is necessary to determine 
the membership degree to fuzzy sets that cover some of the intervals. After the 
membership degree determination, the considered values join that fuzzy set to which they 
belong with the highest membership degree (Teodorović and Šelmić, 2012). 

Finally, we obtain one rule from one pair of desired input-output data, e.g.: 

(x1(1), x2(1), x3(1); y(1))  =›[ x1(1)(4.9 in Medium, max), x2(1) (943 in Medium, max), x3(1) 
(957.821 in Large, max); y(1) (132.7 in High, max)] =› Rule 1. 

Rule 1:  IF x1 is Medium and x2 is Medium and x3 is Large, THEN y is High 

After this procedure we made 8 fuzzy rules, the one for each input-output pair of data. 

The fuzzy rules obtain from numerical data are given below: 

• If “TK” is Medium and “AWT” is Medium and “NPK” is Large then “AEC” is High;
• If “TK” is Large and “AWT” is Medium and “NPK” is Large then “AEC” is Very High;
• If “TK” is Large and “AWT” is Heavy and “NPK” is Large then “AEC” is Very High;
• If “TK” is Medium and “AWT” is Medium and “NPK” is Medium then “AEC” is Medium;
• If “TK” is Medium and “AWT” is Heavy and “NPK” is Small then “AEC” is Medium;
• If “TK” is Small and “AWT” is Medium and “NPK” is Medium then “AEC” is Low;
• If “TK” is  Medium and “AWT” is Medium and “NPK” is Small then “AEC” is Medium;
• If “TK” is Large and “AWT” is Light and “NPK” is Large then “AEC” is Medium;

Next step is to check all obtained rules and to eliminate same or conflict rules, i.e. rules 
that have same IF part but a different THEN part. In this example all defined rules are 
correct, there are no conflict or same rules.  
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Most often, available pairs of input-output data are not sufficient to “cover” all the 
different situations that can happen in a particular system. Fuzzy rule base is more 
complete if the number of different input-output data pairs is bigger. In order to obtain 
better results fuzzy rule base may be amended with additional fuzzy rules generated by 
an expert. The final fuzzy rule base in the case of prediction of freight train average energy 
consumption in Serbia is shown in Table 4. Fuzzy rules generated by the experts are 
underlined. 

Table 4. Final fuzzy rule base 

TK-Small TK-Medium TK-Large 

AWT 

small 

AWT 

medium 

AWT 

heavy 

AWT 

small 

AWT 

medium 

AWT 

heavy 

AWT 

small 

AWT 

medium 

AWT 

heavy 

NPK 

small 

Very 
low 

Very low Low Low Medium Medium Medium High Very 
high 

NPK 

medium 

Very 
low 

Low Low Low Medium High Medium High Very 
high 

NPK 

large 

Very 
low 

Low Low Medium High Very 
high 

Medium Very 
high 

Very 
high 

4. CASE STUDY – RESULTS AND DISCUSSION

Considering the Serbian railway network, there is only 1278.7 km electrified railway lines 
that are one-third of the total network length (3735.8 km). The forecast of freight traffic 
on Serbian railway network (Figure 7) for period 2018-2022 shows an increase in freight 
traffic (Ćalić, 2018), and it is considered that most of the forecasted transport of goods 
will be carried out on electrified lines, as they are main lines. 

Figure 7. Forecast freight train transport for period 2018-2022, on Serbian railway 
networks 

In order to test our model we apply the following input data (for year 2013): 

• TK = 4.628 million kilometres,
• AWT = 912 tonnes,
• NPK = 693.911 thousand kilometres.
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After defuzzification process, for which the centre of gravity is used, the output value is 

obtained: AEC is 109 million kWh. 

Table 5 shows comparison of the results between real data and the one obtained from 
Wang - Mendel method.  

Table 5. Comparison of the results 

Year TK [mil km] AWT 
[tonne] 

NPK [thousands 
of km] 

AEC [mil 
kwh] 

AEC using 
Wang 

Mendel [mil 
kwh] 

Deviation 
[%] 

2007 4.909 943 957.821 132.723 133 0.21% 

2008 6.890 1018 973.953 172.118 164 -4.95% 

2009 6.547 1150 1 044.119 153.103 163 6.07% 

2010 5.092 998 841.230 114.569 128 10.49% 

2011 5.153 1100 690.245 118.586 125 5.13% 

2012 4.057 971 761.418 92.501 103 10.19% 

2013 4.628 912 693.911 110.201 109 -1.10% 

2014 5.852 840 995.357 112.093 133 15.72% 

From Table 5 and Figure 8 it can be seen that developed Wang - Mendel method is able to 
predict energy consumption within 10% deviation in 5 cases, in 2 cases deviations are 
near 10%, and in just one case deviation is close to 16%. These results are very 
encouraging for the further implementation of this model.  

Figure 8. Comparison of the results 

5. CONCLUSION

Electric energy consumption for rail freight transport is uncertain and hard to be 
predicted. When the data on energy consumption from previous period are available, 
Wang-Mendel method could be used to obtain fuzzy rules. However, fuzzy rules that could 
be defined according to data from the past most often do not reproduce all possible 
situations, which could emerge as a result of input variables membership functions 
combinations. This often leads to imprecision and inaccuracy. 

0

50

100

150

200

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

Real data

WM
method



 

44 

This paper presents the model for prediction of freight train energy consumption. 
Relevant considered input are: freight train kilometers, average freight train weight and 
non-productive kilometers. The developed model is verified through the real data collected 
in the Republic of Serbia.    
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