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Abstract:  The presence of drones in everyday life expands on a daily basis. In the last couple 
of years, the usage of aerial drones (UAV-Unmanned Aerial Vehicles) in last-mile parcel 
delivery attracts more and more attention. Some companies (mainly in the USA and 
Australia) have already tested and applied the usage of drones in the parcel delivery. There 
are many papers describing a two-phase approach for routing the drone–ground vehicle 
tandem. Most of the previous work in this domain propose different heuristics, 
metaheuristics and optimization approaches for the transformation of a given truck route 
to a truck-drone route. Considering the simultaneous approach for solving the routing 
problem with drones, the literature is very scarce. The purpose of this paper is to present a 
novel MIQP (Mixed Integer Quadratic Programming) model of a simultaneous approach to 
solving the VRPDTW (Vehicle Routing Problem with Drones and Time Windows). 
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1. INTRODUCTION

The usage of drones finds its place in many different spheres of everyday life: military 
purposes, surveillance, sports and recreation and of course logistics. The two main 
domains of drone application in logistics are distribution and warehousing. In 
warehousing, the drones are used for scanning purposes, while in the distribution the 
drones find their application in small parcel delivery. The application of drones in parcel 
delivery results in different kind of problems that must be solved: regulatory and safety 
problems, technical problems and the most interesting group - the tactical and operating 
problems (in this case, the routing problem). From 2015 and up to today, many articles 
and papers described various approaches for solving routing problems with drones. The 
purpose of this paper is to present a novel Mixed Integer Quadratic Programming (MIQP) 
model for solving the Vehicle Routing Problem with Drones and Time Windows 
(VRPDTW) with simultaneous optimization of both vehicle and drone operations. In the 
following sections of this paper we present a literature review on the topic of VRP with 
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drones, problem formulation, the MIQP model, test instances with computational results 
and the concluding remarks. 

2. LITERATURE REVIEW

The first papers proposing a solution to routing problem with drones appeared in 2015. 
Murray and Chu (2015) described a new subtype of the classical TSP (Traveling Salesman 
Problem) and named it FSTSP (Flying Sidekick Traveling Salesman Problem). In their 
paper, the authors propose a MILP model for the transformation of a given truck route to 
a truck-drone route. Later, in the same year, Agatz et al. (2015) proposed another MILP 
model for solving the so-called TSPD (Traveling Salesman Problem with Drones). These 
two papers were the pioneers of research in the area of solving routing problems with 
drones, so all other papers in the following years were related to the aforementioned 
research. In literature, there are many papers proposing different heuristics and 
metaheuristics for improving the approaches described in two aforementioned papers. 
Ponza (2016) showed that the application of SA (Simulated Annealing) can lead to much 
greater savings of the traveling time, compared to the original FSTSP. Ponza also proved 
that different technical characteristics of drones affect the setup of models for solving the 
routing problem with drones. Marinelli et al. (2017) describe an interesting approach for 
improving the initial TSPD solution, called “en-route” approach. All of the previous work 
assumed that the drone can leave/join the truck only at the customer nodes that are 
visited by the truck. The idea of “en-route” approach is to examine the effects of the 
concept where the drones could be launched from any point along an arc that the truck is 
traversing. Also, drones could join the truck again at any point along an arc that the truck 
is traversing. The authors proposed a heuristic for the “en-route” approach and proved 
that this approach could lead to significant savings in traveling time, due to the reduction 
of the total waiting time. The possible problem with this approach comes from the fact 
that sometimes the truck is not allowed to stop along the arcs. Savurhan and Karakaya 
(2015) developed a genetic algorithm for solving the TSPD. Luo et al. (2017) described a 
two-echelon approach for the TSPD, and they named it 2E-GU-RP (2 Echelon – Ground 
Vehicle and Unmanned Aerial Vehicle – Routing Problem). In the 2E-GU-RP the truck 
serves as a mobile warehouse, while all the nodes are served by the drones. When the 
truck stops at a certain location, all the nodes (that are in the flight range) are being served 
by drones. This approach could have a practical application in scenarios in which many of 
the customer nodes could not be visited by the ground vehicle. Ferrandez et al. (2016) 
compared the effects of truck-only, truck-drone tandem and drone-only (2E-GU-RP) 
parcel delivery. 

Although Murray and Chu (2015) and Agatz et al. (2015) propose a one-phase approach 
for solving a one-vehicle routing problem with drones, to the best of our knowledge there 
is no previous work considering the one-phase approach for solving a routing problem 
with multiple vehicles and drones. Accordingly, the goal of this paper is to present a novel 
MIQP model of a systematic approach for solving the VRPDTW. The following chapters 
will describe and analyze the application of the proposed MIQP model for solving the 
VRPDTW. 
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3. PROBLEM FORMULATION 

The goal of VRPDTW is finding the joint vehicles and drones routing solution with minimal 
cost for delivery from a single depot to a given set of customer locations with defined time 
windows, while some of the customer locations could be visited and served by a drone 
(while all locations can be visited by vehicles). In this paper, a heterogeneous fleet of 
vehicles is considered, which means that some of the vehicles contain a drone and some 
of them do not. The drone can depart/join the ground vehicle only at a customer node, 
while every drone is bound to its ground vehicle (it is not allowed for the ground vehicles 
to exchange drones). The proposed approach is cost-based, so the goal is to construct the 
least expensive solution, while the costs consist of traveling costs and labour costs. 

4. MATHEMATICAL FORMULATION OF THE MIQP 

The MIQP formulation in this paper is a derivate of the three-index MILP formulation by 
Fisher and Jaikumar (1978) given for solving the classical VRP. Let V be the set of all 

available ground vehicles, while kV  is the set of ordinary vehicles and dV  is the set of 

vehicles with drones ( k dV V V = ). Let I be the set of all customer nodes, while K is the 

set of nodes that could potentially be visited by a drone ( )K I . The binary variable v

ijX  

equals 1 if the vehicle v is traversing the arc i-j, and equals 0 if otherwise. The second 

binary variable v

ikjX  equals 1 if the vehicle v traverses the arc i-j, while the vehicle’s drone 

traverses along the i-k-j section, otherwise, it equals 0. For each i,j pair there is a 

continuous variable ijC  that represents the distance between i and j, while ikjC  represents 

the distance i-k-j. Let vT  be a continuous variable that represents the route completion 

time for vehicle v. Analogously to the ijC variables, ijt  variables represent the traveling 

time between each i,j pair of nodes, while it  is an auxiliary variable that represents the 

moment when the node i is visited by a vehicle. The variable ikjt  represents the time 

needed for the drone to traverse the i-k-j section. Also, let v

iY  be 1 if the node i is visited 

by vehicle v, 0 if otherwise. The objective function (1) aims to minimize the overall cost, 
while it distinguishes between the labour costs and traveling costs. Labour cost is 
calculated as a product of labour cost per minute – α, and the sum of all route completion 
times (for every vehicle). The traveling costs vary according to the vehicle type: β 
represents the distance unit cost for classical vehicles, η represents the distance unit cost 
of drone carrying vehicles, while ω represents the distance unit cost of drones. All the 
aforementioned results in the following MIQP formulation: 

( )min
k d d

v v v

v ij ij ij ij ij ikj ikj

v V i I j I v V i I j I v V i I j I k K v V

T C X C X C C X    
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Constraint (2) ensures that every node must be visited by a vehicle exactly once, while the 
depot must be visited by all vehicles V. Constraint (3) ensures that the drone flight would 

not exceed the maximum drone flying time  max

dT . Constraint (4) sets the depot departure 

time, and sets the beginning moment of every vehicle route (0 s), while the constraint (5) 
ensures that every vehicle has enough time to return to the depot in the limits of the 

allowed maximum route duration time ( max

kamT ). Constraints (6) and (7) define the visiting 
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moment of every node, and together with the constraint (5) eliminate all sub-tours. The 

variable opslugeT  represents the time needed for serving the customer upon the arrival to 

the customers’ location. Constraints (8), (9) and (10) set the values for the time needed 
for traveling between two nodes, whether the i-j distance is travelled only by a ground 
vehicle, or the distance i-j is traversed by a ground vehicle, while the drone traverses the 

i-k-j distance. In the case of drone assistance, the time ikjt will be equal to the greater value 

of the time needed for the truck to traverse the distance i-j, and the time that it takes for 
the drone to traverse i-k-j. Constraint (11) ensures that no time-window is violated, while 
(12) and (13) ensure that every node has exactly one inbound and one outbound arc. 
Equation (14) sets the corresponding values to the variables that represent the time 
needed for a vehicle to complete its tour. Constraints (15), (16), (17) and (18) calculate 
the drone and truck waiting times for every i-k-j arc that is served by a truck-drone 
tandem.  

5. INSTANCE GENERATION AND MIQP MODEL SETUP

This section will explain the instances, input parameters’ values and MIQP model setup. 
There are several types of instances and they are shown in Table 1. Every instance 
consists of 10 nodes and a depot. There are two variants of depot location: in the first 
variant the depot is located at [0,0], and in the second variant the depot is located in the 
center of the defined area. There are two instance area sizes: 30 km x30 km and 60 km 
x60 km. Also, two variants of node structures are considered: the first variant consists of 
nodes where half of them could be visited by the drone, and in the second variant, all 
nodes could be visited by the drone. All nodes are randomly distributed in the defined 
area, with randomly generated time-windows within the boundary time-windows range. 
There are three considered types of time-windows range: 60 min, 120 min and 480 min. 
Regarding the MIQP model input parameters, the labour costs value is set to 0.05 €/min, 
while the distance unit cost values for classical vehicles, drone carrying vehicles and 

drones are set to 1.0, 1.5 and 0.2 €/min respectively. opslugeT  is set to be 10 minutes. The 

speed of the ground vehicles is set to be 40 km/h, while the speed of drones is set to 60 
km/h. The maximum allowed route duration time per vehicle is set to be 8 hours, while 
the maximum allowed CPU for solving an instance is set to be 30 min. 

6. RESULTS ANALYSIS

In this chapter, the result analysis of the MIQP model application will be presented. The 
following output parameters and results will be analyzed: the average objective function 
value, the average CPU, the average distance travelled, the average vehicle traveling time, 
the average vehicle waiting time and the average number of used vehicles. All the 
aforementioned parameters will be analyzed and compared from the aspect of different 
vehicle types and the maximum drone flight range. The model solved all instance with 
optimality within given CPU time restriction, except for instance types 4 and 16 when the 
maximum drone flight time is set up to be 60 minutes.  
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Table 1. Instance types 

Instance 
type 

Depot 
location 

Area 
dimensions 

(km x km) 

Percentage 
of drone 

nodes 

Time windows 
range (min) 

Type 1 [0,0] 30x30 50% 120 
Type 2 [0,0] 30x30 100% 120 
Type 3 [0,0] 30x30 50% 480 
Type 4 [0,0] 30x30 100% 480 
Type 5 [0,0] 30x30 50% 60 
Type 6 [0,0] 30x30 100% 60 
Type 7 [0,0] 60x60 50% 120 
Type 8 [0,0] 60x60 100% 120 
Type 9 [0,0] 60x60 50% 480 
Type 10 [0,0] 60x60 100% 480 
Type 11 [0,0] 60x60 50% 60 
Type 12 [0,0] 60x60 100% 60 
Type 13 center 30x30 50% 120 
Type 14 center 30x30 100% 120 
Type 15 center 30x30 50% 480 
Type 16 center 30x30 100% 480 
Type 17 center 30x30 50% 60 
Type 18 center 30x30 100% 60 
Type 19 center 60x60 50% 120 
Type 20 center 60x60 100% 120 
Type 21 center 60x60 50% 480 
Type 22 center 60x60 100% 480 
Type 23 center 60x60 50% 60 
Type 24 center 60x60 100% 60 

From Table 2 it can be noticed that the average objective function had a lower value in the 

model variant where max

dT =60 min. However, a better objective function value lead to 

greater CPU times. The conclusion that can be made is that the cost of the truck-drone 
parcel distribution decreases with the improvement of the technical characteristics of the 
drone (in this case, the drone flight range). The average objective function value for all 
instances and both model setups is 217.5 €, while the average CPU is 100 s. Comparing 

the two max

dT input values, the MIQP model gave better cost savings when all the nodes 

were available for the drone to visit with max

dT =60 min. The average cost savings of max

dT

being 60 instead of 30 min is 7.23%, while the average increase of CPU needed for solving 

the instances is 277 s. The only instance type where the model with max

dT = 30 min 

outperforms the 60 min version is type 4. The reason this occurred is that the model could 

not solve some instances to optimality within the given CPU time restriction when max

dT

was set to be 60 min. 

The second parameter that will be analyzed is the average distance travelled by a vehicle 
type. The average values per different instance types are shown in Figures 1 and 2. The 

average distance travelled for the case max

dT = 30 min is 151 km for the classic truck, 20 km 

for the drone carrying truck and 26 km for the drone. The average distance travelled for 

the case max

dT = 60 min is 92 km for the classic truck, 45 km for the drone carrying truck 

and 81 km for the drone. The average reduction of classic truck route length is 39%, and 
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the average increase of drone carrying truck and drone routes are 122% and 212% 

respectively when changing the value of max

dT from 30 to 60 min. 

Table 2. Average objective function value and average CPU by instance for max

dT  of 30 and 

60 min 

max

dT = 30 min max

dT = 60 min 
Difference of 60 min 

from 30 min  max

dT

solutions 

Instance 
type 

Avg. objective 
function value 

(€) 

Avg. CPU 
time (s) 

Avg. objective 
function value 

(€) 

Average 
CPU time 

(s) 

Obj. func. 
(%) 

CPU time 
(%) 

Type 1 167.52 12.26 165.64 37.67 -1.12 207.26 
Type 2 156.20 28.66 149.42 312.27 -4.34 989.57 
Type 3 119.44 183.53 119.44 388.15 0.00 111.49 
Type 4 119.44 340.74 120.39* 1262.60 0.80 270.55 
Type 5 207.28 2.03 199.65 5.69 -3.68 180.30 
Type 6 170.40 3.91 158.95 24.33 -6.72 522.25 
Type 7 375.29 4.51 361.15 8.81 -3.77 95.34 
Type 8 371.52 5.77 311.15 20.01 -16.25 246.79 
Type 9 233.88 34.12 233.88 113.11 0.00 231.51 
Type 10 233.88 60.87 233.88 259.66 0.00 326.58 
Type 11 418.05 0.88 404.90 1.82 -3.15 106.82 
Type 12 411.38 1.30 355.98 4.16 -13.47 220.00 
Type 13 148.78 12.06 146.18 35.86 -1.75 197.35 
Type 14 131.25 67.15 117.65 131.67 -10.36 96.08 
Type 15 107.84 34.42 106.27 124.98 -1.46 263.10 
Type 16 105.20 148.20 98.96* 848.24 -5.93 472.36 
Type 17 161.90 2.66 157.91 9.18 -2.46 245.11 
Type 18 135.72 6.52 120.02 25.69 -11.57 294.02 
Type 19 291.90 2.28 271.33 6.80 -7.05 198.25 
Type 20 288.60 4.57 237.75 19.58 -17.62 328.45 
Type 21 215.61 10.22 210.92 44.03 -2.18 330.82 
Type 22 215.61 40.00 206.25 118.99 -4.34 197.48 
Type 23 318.29 0.88 293.72 1.46 -7.72 65.91 
Type 24 313.15 1.43 244.75 2.99 -21.84 109.09 

Total avg. 225.76 42.04 209.42 158.66 -7.23 277.39 

*-some MIQP solutions were not solved to optimality in available computational time 

Figure 1. Average distance travelled by vehicle type, max

dT = 30 min 
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The vehicle route lengths were drastically reduced with the increase of the maximum 
allowed drone flight time. As expected, the intervention of drone is greater in the 
instances where the drone is allowed to visit all of the nodes. In instance types 3, 4, 9 and 

10, for both max

dT values, all the nodes were visited by the classic truck, and no drone was 

used for parcel delivery in these instance types. The classic vehicle was never used in 
instance type 6. So, the conclusion is that the traveling distance and the usage of different 
vehicle types is strongly dependent on the instance structure, as well as the 
characteristics of the drone. 

Figure 2. Average distance travelled by vehicle type, max

dT = 60 min 

Figures 3 and 4 show that the average time travelled per vehicle type varies for different 
instance types. All the results of traveling time are related to the results of the distance 
travelled by each vehicle type. Considering the waiting times, the average waiting time of 

the truck was 11.15 min (with max

dT = 30 min) and 38.72 min (with max

dT =60 min. The drone 

waiting time had always a lesser value than the truck waiting time, except on the instance 

type 12 and max

dT = 60 min.  

Figure 3. Average time travelled by vehicle type, max

dT = 30 min 
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Figure 4. Average time travelled by vehicle type, max

dT = 60 min 

Considering the average number of used vehicles, the increase of the allowed drone flight 
time results in a more frequent usage of drone-carrying trucks in parcel delivery. The 

average number of used vehicles (both classic and ones carrying drone) when max

dT = 30 

min is 1.5, while the average number of used vehicles when max

dT = 60 min was 1.4. Based 

on this result, we can conclude that the usage of drones with better technical 
characteristics could lead to a reduction in the number of ground vehicles needed for 
distribution. 

Different route structures for the same instance, with a different number of drone nodes, 

and different max

dT are shown in Figure 5. It is obvious that the route structures are strongly 

dependent on the allowed drone flight time and the number of locations that could be 
visited by the drone. 

 

Figure 5. Different route structures per some instance types 
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7. CONCLUSION  

In this paper, a novel MIQP model for solving the VRPDTW in a systematic manner is 
presented. The model was formulated to solve various types of costs in a tandem vehicle-
drone parcel delivery, with the goal of minimizing the distribution cost related to travelled 
distance and working time. The model was used to solve various types of instances. The 
application results have shown that a significant cost saving could be achieved with the 
intervention of drones in parcel delivery. Further research could go in several directions. 
The first direction could be exploring the effects of the approach where the ground 
vehicles could exchange drones so that no drone is bound to a particular truck. The other 
research directions could focus on how the improvement of drone technical 
characteristics could affect the distribution and logistics in general. Also, a development 
of a heuristic approach to solve larger scale instances that are closer to real-life 
dimensions is one of the interesting research possibilities. 
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