5™ Logistics International Conference
LOGIC Belgrade, Serbia
26 - 27 May 2022

MODELLING TRANSPORT ACTIVITIES FROM INVENTORY
REPLENISHMENTS IN SUPPLY CHAINS BY USE OF NUMERICAL
SIMULATIONS AND MACHINE LEARNING ALGORITHMS

Samir Zic 2", Jasmina Zic b

aUniversity of Rijeka, Faculty of Engineering, Croatia
b University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture

Abstract: A periodic review inventory policy represents a standard inventory management
model in modern supply chains due to its many advantages. This paper studies its logistic
aspects coming from the number and size of transport activities related to inventory
replenishments resulting from normally distributed market demand. Due to the stochastic
nature of market demand, no simple procedures or algorithms for determining the optimal
values of the characteristic variables of the periodic review inventory policy exists, so
extensive numerical simulations and symbolic regression analysis of a supply chain echelon
are used in this paper. Equations for average order size and required number of orders
related to inventory replenishments are developed with R? Goodness of Fit and Correlation
Coefficient higher than 0.99 tested on 139.500 simulation experiments of a supply chain.

Keywords: supply chain management, periodic review, inventories, logistics, symbolic
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1. INTRODUCTION

Supply chains (SC) are dynamic systems of high complexity, operating under numerous
influential factors. As one of the key elements of supply chain management, the goal of
inventory control is to ensure the maximum possible fulfilment of market demand while
achieving inventory levels and cost reduction in a highly competitive business
environment. As freight transport mainly relies on conventional energy carriers like
diesel, kerosene and heavy fuel oil, it significantly contributes to major challenges of the
21st century: pollution and climate change.

This research aims to establish relationships arising from logistical aspects of inventory
replenishments in a periodic review inventory policy of a modern supply chain and offer
findings to academia and practitioners. Specifically, our research analyses a minimal
required number of transportation activities and their size required to fulfil normally
distributed market demand for products under varying SCs working conditions. This
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research aims to determine the relations needed for optimisation of transport activities
related to inventory replenishments in periodic review inventory policy by the use of
advanced techniques of simulation modelling and machine learning. Relevant literature
recognises the lack of quantitative models required to examine the possibilities of optimal
solutions in terms of operative, economic, and more environmentally suitable
approaches. This study aims at contributing to that direction.

1.1. Period review inventory management

Inventory management represents one of the critical processes of supply chain
management to balance production and meet the market demand while keeping costs as
low as possible. In this context, supply chain managers aim to reach the essential target
of an efficient supply chain - having the correct quantity at the right time and in the right
place (Longo F., 2011).

A well-known control policy in stochastic inventory control is the (R, s, S) policy, in which
inventory is raised to an order-up-to-level S at a review instant R whenever it falls below
reorder-level s. Such policies offer several practical advantages and are considered
optimal by industry and academia. They facilitate optimal planning and coordination of
ordering decisions in multiproduct environments.

One of the essential inventory management strategies is how the company approaches
the excess demand and the occurrence of temporary stockouts - it can either be back-
ordered or treated as lost sales. Although back-ordering is predominantly present in the
relevant literature, according to the research of (Gruen, Corsten, & Bharadwaj, 2002), only
15 % of the customers will, in a real-life setting in an out-of-stock situation, postpone the
purchase and wait for the product to be available again. The lost sales environment, which
is analysed in this research paper, is prevalent in highly competitive sectors like retail,
service, machinery spare parts and online sales (Gruen, Corsten, & Bharadwaj, 2002),
(Breugelmans, Campo, & Gijsbrechts, 2006), (Babiloni & Guijarro, 2020). Additionally, the
works of (Bashyam & Fu, 1998), (Bijvank, 2014) and (Bijvank & Vis, 2012) indicate that,
since the customer satisfaction is often being a differentiation strategy among
competitors, and with shortage costs particularly hard to evaluate in practice correctly,
service-based requirements are more common in the real-life business sector. As
recognised by (Kapalka, Katircioglu, & Puterman, 1999), adding a service-based
constraint to an inventory model with lost sales makes the model more realistic but makes
computation and analysis more difficult, which results in fewer publications studying this
problem. There are no simple procedures or algorithms for determining the optimal
values of (R, s, S) characteristic variables in real-world conditions (Babai MZ et al., 2020),
(Kiesmiiller GP et al., 2011). Consequently, controlling inventories by the subjective
assessment, without an algorithmic basis, can result in suboptimal inventory
management, increased costs, holding an inadequate amount of inventories and negative
consequences such as the bullwhip effect (Zic, S. et al., 2015).

1.2. Logistics

Modern supply chains are recognised as complex systems operating in a global
environment, characterised by flexibility in business operations, quick reactions to
market demands and changes, the use of technological innovations such as data science,
machine learning, artificial intelligence, optimisation of inventories together with the
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implementation of a green or sustainable approach. Transportation activities are often
neglected in the research even though transportation costs can form more than 50% of
the total logistics costs of a product (Swenseth S.R. and Godfrey M.R., 2002). Additionally,
with uncertainty in the demand patterns, which is the usual case in real-life production
and distribution situations, inventory situation gets significantly more complicated (L.
Tiacci, S. Saetta, 2009). In logistics, shipment frequency is positively related to fuel
consumption and carbon emissions; however, fewer but larger shipments could lead to
undesirable higher inventory levels and additional costs (Tang et al, 2015).
Unfortunately, many studies (Lee et al. (2005), Van Norden and Van de Velde (2005))
assume that demand data, though variable and non-stationary, must be known. When
demand is no longer assumed to be deterministic, as in many production and distribution
situations, the introduction of uncertainty in the demand pattern significantly
complicates the inventory situation.

In logistics, transportation should provide the most room for cutting carbon emissions
since it involves heavy fuel consumption (Andress et al.,, 2011). The amount of carbon
emissions in transportation is determined mainly by transportation frequency and fuel
efficiency. Shipment frequency is positively related to fuel consumption as well as carbon
emissions. Subsequently, higher-order quantity and less frequent transportation would
allow firms to utilise their vehicle capacity better or employ a vehicle with greater
transport capacity to save total fuel consumption and reduce carbon emissions. However,
fewer but larger shipments lead to undesirable higher inventory levels and additional
costs. Therefore, it is natural to ponder whether this approach can reduce emissions
effectively and economically and what factors impact the additional cost.

1.3. Machine learning and symbolic regression

Data modelling involves using a limited number of observations of systems variables for
inferring relationships among these variables. A number of control parameters
characterise the system under study. Empirical modelling attempts to express these
critical control variables via other controllable variables that are easier to monitor and
can be measured more accurately or timely. Control variables are referred to as outputs.
Variables, or properties, used for expressing the response are called inputs or input
variables. A combination of values of all input variables and the associated values of the
output variables is called a scenario. The modelling task is to detect the driving input
variables that cause the change in the observed response variables and formulate the
relationship in the form of an accurate model. The quality of this model is assessed by the
resemblance of the predicted output to the observed output based on a number of data
points. For many industrial applications, the resulting relationships between the input
variables and the output variables of a physical system can be found implicitly (Kleijnen,
2005; Kleijnen et al., 2005). Genetic programming (GP) for symbolic regression was first
proposed by (Koza 1992) as one of several different applications of genetic programming.
Since then, symbolic regression has been widely applied in many engineering sectors,
such as industrial data analysis (e.g., Luo et al., 2015; Li et al., 2017), circuits analysis and
design (e.g., Ceperic et al., 2014; Shokouhifar & Jalali, 2015; Zarifi et al., 2015), signal
processing (e.g.,, Yang et al., 2005), empirical modelling (e.g., Gusel & Brezocnik, 2011;
Mehr & Nourani, 2017), system identification (e.g., Guo & Li, 2012; Wong et al., 2008) and
materials analysis (Mu He, Lei Zhang, 2021).
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The fact that symbolic regression via GP does not impose any assumptions on the
structure of the input-output models means that data determine the model structure. On
the other hand, the absence of constraints on the model structure is the greatest challenge
for symbolic regression since it vastly increases the search space of possibilities, which is
already inherently large. Larger data sets with more input variables and more records
make symbolic regression even harder. The rationale of doing the 'evolutionary' search
in a vast space of alternatives is to balance the exploitation of the good solutions found so
far with exploring the new areas of the search space, where even better solutions may be
hiding. At least two or possibly more criteria are used for selecting' good' individuals for
further propagation. Often these criteria are prediction error and model expressional
complexity. Since these optimisation objectives are competing, the performance of
individuals is compared concerning the Pareto-dominance relation in the objective space
of model complexity and model error. In Pareto GP, model development happens parallel
with automatic identification and exploitation of driving inputs that influence the
observed output (Smits et al., 2005). Theoretically, GP can obtain an optimal solution if
the computation time is sufficiently long.

2. EXPERIMENT DESIGN
2.1. Market demand simulation

Our model assumes stochastic demand with targeted fill rate as a service-based constraint
and the lost sales environment, in which partial deliveries or backlogging is not allowed.
Simulation models usually represent a suitable approach when the relations among
components do not conform to simple equations or the equation is unknown (Taylor,
2003). Simulation modelling as a tool for analysing various aspects of periodic review
inventory policy is present in numerous works.

This study aims to test a wide range of inventory model setup parameters to gather high
accountability results. Our research model consists of an inventory simulation model
operating under (R, s, S) policy whose output results represent the input information for
the symbolic regression model. A general outline of this research is presented in Fig 1.

SIMULATION MODEL

INVENTORY SYMBOLIC
SIMULATION MODEL OUTPUTS REGRESSION
broad spectre of mean brute force lowest inventory symbolic define equations between

order-up-to level S and
reoreder points s, number and
size of required inventory
replenishments

market demands, market search regression
demand oscillations, review

periods and lead times

SC parameters and number
and size of required
inventory replenishments

Figure 2. Research framework

The experimental design of our inventory simulation model includes normally distributed
market demand with five levels of mean daily demand, three levels of demand oscillations,
ten replicas of demand per each combination of mean demand and standard deviation of
demand (in total, 150 simulated market demands), 30 levels of the review period, 31 level
of lead time and one fill rate of 100% resulting in a total of 139.500 simulation scenarios
as presented in Table 1.
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Table 1. Inventory model experimental design

Mean market demand () unit/day | 10, 70, 130, 190, 250
Coefficient of variation of market demand (CV) 0.1,0.2,0.3

Inventory service performance measures fill rate (B-service level)
Service levels % 100

Delivery lead time (LT) day 0,1,2,..30

Review period (R) day 1,2,3,..30

The minimal value of CV=0.1 for each value of p represents the market demand with
minimal oscillations. As the oscillations of market demand increase, minimal values of
daily market demand get closer to 0, increasing the range between minimal and maximal
values of p to twice the average values. Such high oscillations will result in a significant
increase of s and S inventory levels to fulfil the same fill rate compared to the same p with
lower oscillations. Market demand and order size are of non-negative integer values.
Market demand is observed for 365 days and can be of value 0 due to the stochastically
modelled normally distributed demand. For uniformity of simulation experiments,
simulation experiments (SE) start on Monday with inventory levels set to order up to level
S. Deliveries executed within the same working day on which the order was launched are
referred to as replenishments with zero lead time. Generation of market demands is done
in Python and analysis in Prism for Windows, version 9.0.0. Results are visible in table 2,
in which each column represents average values of 10 market demands.

Table 2. Descriptive statistics of 150 simulated market demands

[Mean 10 70 130 190 250

Std. Deviation 1 2 3 7 14 21 13 26 39 19 38 57 25 50 75
Std. Error of Mean 01 | 01 0,2 04 | 07 1,0 | 0,7 1,0 | 2,0 1,0 | 20 3,0 1,0 30 | 40
Minimum 72 | 44 1,6 | 496|303 | 10,9 | 922 | 557 | 24,8 [130,8| 83 27 11759(107,4| 27,7
25% Percentile 9 9 8 65,2 | 60,2 | 55,6 |121,3| 113 |103,2[176,9|165,4 |152,4|233,3|216,7|198,1
Median 10 10 10 70 | 701 | 69,5 | 130 |129,9| 130 |190,3|189,5]|189,6|250,1|249,8|250,3
75% Percentile 11 11 12 | 7481793 | 84,2 | 139 | 148 |156,9|202,8| 216 |228,1|267,2|283,3|300,6
Maximum 13 | 156 | 19,2 | 90,6 [109,5]|129,5|168,5|207,4 | 246,8|246,6 | 308,3 |359,9|321,8|399,8|476,5
Range 58 | 11,2 | 17,6 | 41 | 79,2 |118,6] 76,3 |151,7| 222 |115,8|225,3|332,9|145,9|292,4 |448,8

Lower 95% Cl of mean| 10 10 10 69 69 68 | 129 | 127 | 126 | 188 | 186 | 184 | 247 | 245 | 242
Upper 95% Cl of mean| 10 10 10 71 71 72 | 131 | 133 | 134 | 192 | 194 | 196 | 253 | 255 | 258
Coefficient of variation| 0,1 | 0,2 0,3 0,1 0,2 03 | 01 0,2 0,3 0,1 0,2 0,3 0,1 02 | 03

Geometric mean 10 10 9,1 70 69 66 | 129 | 127 |123,1| 189 | 186 |179,9| 249 | 245 |236,9
Harmonic mean 10 10 9 69 67 | 61,4 | 129 |124,1| 114 | 188 |181,7|166,2| 247 | 239 |217,5
Skewness 0,0 | 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0
Kurtosis -0,1 | -0,1 | 0,0 00 | -021]-02 | 0,0 0,0 0,0 0,1 0,1 00 [ -0,1] 0,0 0,0

Table 3 shows that all 150 simulated marked demands have passed the normality test
according to D'Agostino-Pearson omnibus test from the same Prism software.

Table 3. D'Agostino-Pearson omnibus test of 150 simulated market demands

Mean 10 70 130 190 250

Std. Deviation 1 2 3 7 14 | 21 | 13 | 26 | 39 | 19 | 38 | 57 | 25 | 50 | 75

K2 3,62 1,70 | 0,33 0,47 | 2,47 | 1,27 | 0,18 | 2,13 | 1,88 | 5,04 | 0,91 | 0,18 | 1,97 | 0,24 | 2,09
P value 0,16 |1 0,43 0,85 |0,79]0,29 | 0,53 | 091 |0,34 0,39 | 0,08]0,64|0910,37|0,89 0,35
Passed normality test («=0.05)?| Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
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2.2. Brute force search for lowest characteristic inventory levels s and S

The model uses brute force search to determine the lowest values of s and S, which fulfil
the targeted fill rate and satisfy the operating conditions in a total observed period of 365
days. Inventory model outputs represent the basis for the extensive search by symbolic
regression method, which results in modelling equations for average order size and
required number of inventory replenishments in an observed period.

Fill rate (B) is a quantity-oriented measure, representing the quantity of demand in the
observed period which is satisfied from inventory on the stock without back-ordering.
This form of service performance measure is relevant for practitioners since it provides a
fraction of demand which is turned into sales (Tempelmeier, 2007), (Chopra & Meind],
2013), (Luo, Bai, Zhang, & Gill, 2014), (Silver, Pyke, & Thomas, 2016). This paper will use
fill rate as a service performance measure, calculated according to Eq. 1.

B __ number of units supplied from the stock (1)

total demand

For this paper, the authors extensively analysed a unique group of 3=100%, which is
realistic and welcomed in business practice, but theoretical research of such operating
conditions of inventory systems is not significantly present. This is so because it was
impossible to calculate z value (related to the service level) of normally distributed
market demand for which 100% corresponds to an infinitely high value. A schematic view
of the data matrix of a simulated supply chain is visible in figure 2.

Input variables Responses
X1 X2 X3 X4 X5 X6 y1 y2 y3 y4
. average replenishments
No " SD replica R LT B S order size count

n 1 L] L] L] L] L] L] L] L] L] L]
° 2 . . . . . . . . . .
o
o
2
s
] . . . . . . . . . . .
= 139.500 . . . . . . . . . .

Figure 3. Schematic view of data matrix of the simulated supply chain where each line
corresponds to a specific scenario; adopted according to (Vladislavleva, 2008)

In order to determine specific s and S values of simulation experiments with the brute
force search, it is needed to test Z simulation experiments according to equation 2. Two
HP DL580 G8 servers were used for this highly numerically intensive problem. Each
server was equipped with 4 Intel Xeon processors with 30 logical cores and 256 GB RAM.
In total, 3,33-1012 simulation experiments of (R, s, S) inventory control policy were tested
to determine 139.500 simulation experiments with the lowest characteristic values for
operating conditions. The total computational time for the two above mentioned servers
with 120 logical cores each was 4 days, 16 hours and 9 minutes.

Ss—§2

. @

Z=1+s-

Lowest number of required tested simulation experiments, 84 of them were required for
pu =10, SD=1, LT=0 and (R, s, S) = (1, 5, 13), which occurred twice. On the other side, the
highest number of tested scenarios, 272.732.526 of them, was needed for p =250, SD=50,
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LT=30and (R, s, S) = (30, 16190, 23355), resulting in 3.28 million times more simulation
experiments needed for solving one inventory setup with long delivery time, rare review
period and high mean values. Results of 139.500 simulation experiments were tested, and
characteristic values of (R, s, S) inventory policy were extracted for further analysis.
Double-precision values were used since precision, and an adequate number of
simulation experiments are of utmost importance for modelling equations by machine
learning and symbolic regression processes.

2.3. Modelling responses of (R, s, S) inventory policy with symbolic regression

We used Eureqa demo version 1.24 (Nutonian, 2015) for the modelling part, a software
package based on symbolic regression to determine the relationship between the
independent and dependent variables. The software searches the fitting parameters and
the form of the equations simultaneously (Schmidt and Lipson, 2009). Eureqa's genetic
algorithm is multi-objective; two objectives are complexity and error, regardless of the
error metric chosen. Eureqa searches for a formula by combining mathematical building
blocks, which were: add, subtract, multiply, divide, modulo, square root, min and max.
Authors intentionally left out usually used building blocks constants and integer values
because they tend to overfit developed models to specific values of input variables and
reduce practitioners and academia adaptability of proposed models.

Training and validation data were split equally among 139.500 records and shuffled. As
in many industrial and engineering applications recommended, the error metric used was
mean squared error (MSE). MSE is the metric that assesses the quality of the forecasting
model or predictor. MSE also incorporates both the variance and bias (the distance of
predicted value from its actual value). This metric penalises large errors or outliers more
than minor errors. Model generation and searches for Pareto optimal equations lasted for
12h on the HP DL580 G8 server for each of the two models. In that time, approximately
3-1013 formulas and 1,9-106 generations were tested.

3. MODELS

The best model selection compromises the minimum acceptable coefficient of
determination R? and maximum complexity. Equation 3 presents a newly modelled
equation for average order size (AOS) for echelon working under normally distributed
market demand under (R, s, S) inventory policy and equation 4 required number of
inventory replenishments in an observed period N depending on a review period and lead
time (RC). It is understood that observed period N must be several times longer than the
maximal value of R+LT in order for characteristic inventory values to stabilise. Also, R, LT
and N should be in the same time units.

A0S = u(R+LT—mod%T) (3)
N

C=——"p 4)

R+LT-mod=

As it can be seen from Table 4, statistics of proposed models show high values of R2
Goodness of Fit and Correlation Coefficient. The equation for average order size shows
minimal values for R2 of 0.997231 and the equation for correlation coefficient of
0.999034. Mentioned values show that proposed equations, albeit simple and tested on
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an extensive data set of 139.500 simulation experiments, not using integer or decimal
constants and not considering SD, are precise even for experimental setups and models.

Table 4. Models statistics

Average Order
order size count
Mean Absolute Error 52.838 0.420916
Mean Square Error 17663.5 0.626786
R? Goodness of Fit 0.997231 0.998439
Correlation Coefficient 0.999034 0.999449
Rank Correlation 0.999 0.996
Maximum Error 1369.83 58
Inter-quartile Absolute Error 7.080 0.338
Signed Difference Error -43.091 -0.349
Hybrid Correlation Error 0.024 0.022
IAIC Error 1.364e+06 -65147.5

Based on the proposed equation, Figure 3 shows an increase in average order size for all
tested scenarios based on the mean market demand of 1 product/day. These values can
be used for linear scaling to specific mean marked demand in supply chains with periodic
review policy. From figure 3 it is visible that if the lead time is multiple of the review
period, an increase in average order size will be most significant.

Based on the proposed equation, Figure 4 shows a reduction in the required number of
inventory replenishments in an observed period for all tested scenarios. These values are
not sensitive to mean market demand or standard deviation of it. From figure 4 it is visible
that if the lead time is multiple of the review period, a reduction in the required number
of inventory replenishments will be most significant.

4. CONCLUSION

In this paper, authors have analysed (R, s, S) periodic review inventory policy for working
conditions of lead time and review period up to 30 days, normally distributed mean
market demand between 10 and 250 products daily, CV between 0.1 and 0.3. In total,
139.500 simulation experiments were used for machine learning algorithms to model
new equations for average order size and required number of inventory replenishments
in an observed period. Proposed equations with values of R? Goodness of Fit and
Correlation Coefficient higher than 0,99 allow scientists and practitioners to model
logistic aspects of the supply chain working under (R, s, S) inventory policy for fulfilling
100% of market demand, reduce SC costs and GHG emissions and optimally plan
inventory replenishment activities without reducing the percentage of market demand
fulfilment. Proposed equations are simple and do not require the calculation of standard
deviation, making them even more useful for supply chain practitioners.
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Figure 4. Average order size for review period and lead time up to 30 days for mean
market demand of 1 product/day under (R, s, S) inventory policy according to Eq. 3
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