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Abstract: Problem considered in this paper regards inbound truck to dock door assignments in a cross-dock terminals 
with temporal constraints included in decision process. Because of stochastic nature of terminal related activities, 
modifications of already established operational plans are relatively frequent. These disturbances are mainly induced 
by inaccurate assessment of inbound trucks’ arriving times, caused by unpredictable traffic conditions, as well as by 
stochastic nature of unloading operation within a terminal. We present a new approach for solving this type of problem 
by utilizing genetic algorithm framework. Eventually, we compare efficiency of presented algorithm with the algorithms 
already used for solving the problem.  
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1. INTRODUCTION 

Cross-dock is a term used in logistics practice to 
refer to a process implemented mainly in hub 
terminals. Generally, cross-dock implies unloading 
of incoming transportation means at inbound doors, 
and loading of outbound trucks or trailers at 
outbound doors, with little or no storage in between. 
More precisely, general framework of a cross-dock 
terminal implies that after incoming trucks arrive at 
the inbound doors of the terminal, each arrived item 
is sorted in accordance with its destination and 
moved onto the shipping door where outgoing truck 
waits for making delivery to the designated 
destination. The movements of items from the 
inbound to the outbound doors are usually made 
either by fork-lift trucks or conveyors. Efficiency of 
this type of terminals is dependent on the quality of 
numerous cross-docks’ strategic, tactical and 
operational problems. 

Solving a strategic, tactical or operational 
problem implies making a decision, which, on the 
other hand is formalized by generating a plan. Based 
on that plan a problem is solved. 

Accordingly, operational decisions result in 
operational plans which contain detailed information 
about realization of considered activities. Numerous 
operational decisions that have to be made in a 

cross-dock terminal imply generation of numerous 
operational plans. One of those decisions is 
considered in this paper. 

Despite the relatively precise information on 
which operational plans are made, because of 
stochastic nature of terminal related activities, 
modifications of already established operational 
plans are relatively frequent. These disturbances are 
mainly induced by inaccurate assessment of inbound 
trucks’ arriving times, caused by unpredictable 
traffic conditions, as well as by stochastic nature of 
unloading operation within a terminal. High 
intensity of transshipment processes within a cross-
dock terminal implies that any deviation from 
original operational plans has multiplicative impact 
of system performances by influencing all activities 
after the disorder point. 

Because it is practically impossible to influence 
on traffic conditions in order to reduce truck arrival 
time inaccuracies, and because stochastic nature of 
unloading activities is practically inevitable, the best 
way to reduce operational plan disturbances is 
generation of robust operational plans. Such plans 
are capable of absorbing some level of variations in 
arrival and unloading truck times.  

In this paper we present new metaheuristic 
approach of generating robust operational plans for 
one problem in serving inbound trucks in cross-dock 
terminals. After that we compare effectiveness and 



 

173 
 

1st Logistics International Conference, Belgrade, Serbia, 28 - 30 November 2013 

efficiency of two variations of presented 
metaheuristic approach, and compare them to 
approaches and metaheuristic algorithms already 
presented in the literature. Based on the results of 
the computational experiments it is obvious that the 
main contribution of this paper is formalization of a 
solution methodology, based on the genetic 
algorithm framework. This algorithm provides 
solutions of large scale size problems in practically 
applicable times and with reasonable quality. 

The rest of the paper is organized in such way 
that in the following section we give the problem 
description and brief literature review; in section 
three we present new metaheuristic approach for 
solving the problem; in section four we compare 
proposed solution procedures to existing solution 
procedures. Finally, in section five we give 
conclusion on obtained results. 

2. PROBLEM DESCRIPTION AND 
LITERATURE REVIEW 

Problem considered in this paper regards inbound 
truck to dock door assignments in a cross-dock 
terminals with temporal constraints included in 
decision process. This problem is known in literature 
as the truck scheduling problem (TSchP). The 
problem very similar to the TSchP is the dock 
assignment problem (DAP). Because of the 
similarity, the DAP is commonly misplaced with the 
TSchP. The main difference between these two 
problems is that DAP is considered only when set of 
inbound trucks is to be allocated on a set of available 
dock doors in such way that not more than one truck 
is assigned to each dock. The reason for such 
allocation is that DAP does not consider time as a 
constraint.  

On the other hand, the TSchP considers time 
aspect of the problem and consequentially it 
allocates more then one truck on a dock door. In 
other words, TSchP considers the dock doors as 
resources (used by the trucks) that have to be 
scheduled over time. The problem decides on the 
succession of inbound trucks at the dock doors of a 
cross-dock: where and when the trucks should be 
processed [1].  

More precisely, operational plan obtained by 
solving TSchP determines which trucks will be 
served on which dock door, as well as order of 
service for trucks served at the same door.  

Because of its importance on effective realization 
of cross-dock operations, the TSchP has been 
subject of numerous research papers. As a result of 
problem complexity different cross-dock structures 
are considered in the literature, all with intention to 

get insight into the problem by reducing the size of a 
problem. Some authors decided to consider only 
inbound or outbound parts of a cross-dock terminal, 
while others reduced a number of available dock 
doors in a terminal. For the reader interested in 
comprehensive literature review regarding the 
TSchP we recommend papers [1] and [2].  

Another differentiate feature of the TSchP 
models is observed objective function. By 
classification used in [2] authors presented six the 
most widely used objective functions and leave 
place for some surrogate goals of a model.  

Objective function considered in this research is 
firstly used by Acar in [3] and by Acar et al. in [4] 
with the goal to increase the robustness of the 
inbound truck schedule in a cross-dock to deviations 
in arrival times and unloading times. Therefore in 
the rest of the paper we refer to the problem as the 
TSchP with Time Robustness (TSchPTR). 
Aforementioned goal has been accomplished by 
using objective function that aims at spreading the 
slack time (time that remains after subtracting 
inbound trucks’ service times from the time 
available for service at a dock door) as evenly as 
possible in order to create buffers to absorb 
variability in scheduled arrival and service times. 
This is achieved by minimizing the square of the 
slack time since this is equivalent to minimizing the 
variance.  

Therefore if by N we denote cardinality of set of 
incoming trucks to be served on M available dock 
doors, and if Sj,k denotes idle time before task j 
served on dock door k, then objective function used 
in TSchPTR can be written as (1). 
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It should be noted that values of index j larger 
then N refer to idle times after the last trucks served 
at a dock door, as well as that values of Sj,k are equal 
to zero for all trucks j not served at dock door k.  

In [3] and [4] authors define mathematical model 
for obtaining optimal solution of the problem. The 
model consists of linear constraints, quadratic 
objective function and mixed, binary and 
continuous, variables. Because of combinatorial 
complexity of the problem, presented MIQP (mixed 
integer quadratic programming problem) can be 
useful only for small size problem instances. For 
large size problem instances authors presented the 
Door Assignment Heuristics (DAH). In [4] authors 
tested efficiency of the DAH in different dock 
utilization rates which showed that average 
deviation of DAH result from optimal ones ware 



 

174 
 

1st Logistics International Conference, Belgrade, Serbia, 28 - 30 November 2013 

around 9% in the case of high dock utilization, and 
around 4.5% in low utilized systems. 

Metaheuristic approach in solving TSchP is not 
new. So far one can find several papers that already 
used it, and for example authors in [5] used it for 
solving complex case of the TSchP. However, the 
first metaheuristc approach for solving TSchPTR 
can be found in [6] where authors presented 
algorithm based on the Variable Neighborhood 
Search (VNS) metaheuristic framework. Tests 
conducted in the research showed that the VNS 
algorithm outperformed the DAH in terms of the 
objective function values. Nevertheless, VNS’s 
running times seemed to increase exponentially with 
the growth of problem size. Therefore, in this 
research we present another metaheuristic algorithm 
whose running time increases at significantly lower 
rate, but which gives solution of satisfying quality.  

For a detailed insight into the mathematical 
formulation of the TSchPTR, the DAH, the Insertion 
and the VNS algorithm, the reader is referred to [4] 
and [6]. 

3. GENETIC ALGORITHM 

Genetic algorithm (GA) is well known and 
widely used metaheuristic framework designed for 
solving different combinatorial optimization 
problems. The GA exploits of the main principles of 
the evolution of living organisms which eventually 
results in survival and future development of the 
best individuals in a population. Accordingly, 
realization of every GA consists of the following 
procedures: generation of initial population of 
problem solutions (aka chromosomes), selection of 
chromosomes for reproduction process, and 
reproduction process itself. Reproduction process is 
made of crossover, and mutation procedures. 
Procedures of chromosome selection and 
reproduction are repeated as long as one of 
algorithm’s termination criteria is not fulfilled. 
During the algorithm’s run initial solutions are 
successively improved toward a solution which is 
relatively close to the optimal solution of a problem. 
Closer insight to the GA’s procedures used for 
solving the TSchPTR is the subject of this chapter.  

One of the main characteristics of the GA is a 
solution encoding. Encoding used in this research is 
a consequence of the problem’s nature. Namely, 
because the goal of the problem is to optimally 
distribute slack times between successive tasks on a 
dock, an optimal solution has to have increasing 
order of tasks on each dock in terms of truck 
incoming times. Therefore, in a problem of n truck 
arrivals that are to be served on m docks, solution 

encoding is an array of n positions. Each position is 
related to the task whose ordinal number is equal to 
the position in the array, starting from the left hand 
side of the array, and it contains an information 
about the dock on which task is served. Size of the 
so encoded solution space is equal to nm. For 
example, in problem with 10 tasks and 4 docks, the 
solution in which tasks 1, 4, and 7 are served on 
dock 1, tasks 3 and 5 on dock 2, tasks 2, 6, and 10 
on dock 3, and tasks 8 and 9 on dock 4, is 
represented as 1,3,2,1,2,3,1,4,4,3. Illustration of this 
example is given on Figure 1. 
 

 
Figure 1. Solution encoding used in the research 

Each chromosome in the initial population of 
chromosomes is generated in a random manner.  

Selection of chromosomes for reproduction 
process is realized by roulette wheel procedure. 
Probability for selecting a chromosome is obtained 
by implementing fitness function )(xф on value of 
chromosomes objective function x . Expression used 
for fitness function is given by (2), 
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where  represents average value of population 
objective function. 

Chromosome pairs for crossover procedure are 
selected randomly with consideration that two same 
chromosomes cannot be selected. In such case one 
chromosome is replaced with some other 
chromosome from selected population. Eventually, 
if there are no two different chromosomes in a 
remaining crossover population, one of them is 
replaced with randomly generated one, as in initial 
population.  

As crossover operators we used two simple but 
widely used ones. The first one is 1-point crossover 
operator where one break point on both parents is 
randomly selected. The first offspring is generated 
by combining the part before the break point on the 
first parent and the part after the break point on the 
second parent. The second offspring is generated 
accordingly, but with parents’ counterparts. 
Illustrative example of the used 1-point crossover is 
presented on Figure 2. 

The second crossover operator is 2-point 
crossover. This operator implies selection of two 
randomly selected break points for both parents. The 
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first offspring is generated by replacing first parent’s 
part of chromosome between breaking points by 
second parent’s part of chromosome between break 
points. The second offspring is generated 
accordingly but with reverse positions of parents. 
Illustrative example of 2-point crossover is 
presented on Figure 3. 

 

 
Figure 2. An example of one point crossover used in 
the GA algorithm 
 

 

Figure 3. An example of two point crossover used in 
the GA algorithm 

Mutation of the chromosomes is realized by 
selecting a random position in the array and 
changing its original value with a randomly selected 
value from a set of remaining docks. 

4. COMPUTATIONAL EXPERIMENTS 

In order to test this algorithm’s effectiveness and 
efficiency for solving the TSchPRT we exploit the 
set of problem instances used in [6]. Three sets of 
problem instances are considered, each with 
different problem complexity. The first set consists 
of 10 trucks (small problem size), the second of 25 
(medium problem size), and the third of 50 (large 
problem size) trucks. Each truck has randomly 
generated arrival time according to uniform 
distribution on the [0, 8] h interval, as well as 
randomly generated duration of service time 
uniformly distributed on the [0.4, 2.4] h interval. It is 
supposed that service time of a truck is the same for 
all docks. The number of available docks changes 
with the number of trucks in the planning horizon. 
Accordingly, there are four, six and ten available 

dock doors for the small, medium and large problem 
instances, respectively.  

We observed planning horizon of 16 hours during 
which all, except first four docks, are available for 
service during [0, 16] h interval. The first dock is 
supposed to be available during [12, 16] h interval, 
the second during [8, 12] h interval, the third during 
[9, 16] h interval, and the fourth during [4, 14] h 
interval. Notice that first four docks are always used 
in serving trucks, regardless of problem size. 
Additional docks are used with the problem size 
increase according to the previously explained 
strategy. 

Algorithm’s termination criteria implied that 
search procedure is finished if after 100 steps there 
were not solution improvement. In every step we 
considered population of 100 solutions. Besides that, 
we supposed that probability of mutation is 0.1, and 
of crossover it is 0.95. 

Because of the problem complexity only small 
size problem instances are solved to the optimality 
by using CPLEX 12.2’s quadratic optimizer. In the 
cases of deterministic heuristics (DAH and 
Insertion) every instance is solved once, while in the 
cases of the VNS and GA every instance is solved 
ten times. All of the test runs were executed on a 
Windows XP OS powered by an AMD Phenom II 
2.61 GHz processor with 1GB of RAM, while all of 
the coding was done in Python 2.5. 

Results of conducted tests are summarized in 
Table 1 and Table 2. First three columns describe 
instances, precisely, ordinal number of an instance, 
number of inbound trucks to be allocated, and 
number of available dock doors. Column “Opt” in 
table 1 contain data about the objective value 
obtained for an instance by implementing CPLEX’s 
quadratic optimizer. Column “DAH” contains data 
about the minimal objective function of an instance 
obtained by implementing DAH algorithm, proposed 
by Acer in [3]. Column “Insertion” in table 1 contain 
information on the minimal values of objective 
function for an instance obtained by implementing 
insertion algorithm, presented in [6]. Similarly, 
column “VNS” contains best out of ten solution 
objective values of implemented VNS algorithm, 
proposed also in [6]. Columns, “GA – 1opt” and 
“GA – 2opt” contain data about the best objective 
values related to the implementation of GA based 
algorithms presented in this paper. 

Table 2 holds information on average time an 
algorithm requires for an execution. First three 
columns in table 2 have the same meaning as in the 
case of the table 1. Following six columns refer to 
the same algorithms, but now containing data about 
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the average time required for obtaining a solution of 
the TschPTR. 

Table 1. Minimal values out of ten obtained solutions  

Inst 
No 
of 

trucks 

No 
of 

docks 
Opt DAH Insertion VNS  

GA 
 1point

GA 
 2point

1 10 4 7.33 20.54 8.05 7.33 7.33 7.33 

2 10 4 7.44 21.57 8.38 7.44 7.44 7.44 

3 10 4 8.38 23.35 8.53 8.38 8.38 8.38 

4 10 4 5.65 20.29 6.04 5.65 5.65 5.66 

5 10 4 6.52 20.28 6.88 6.52 6.54 6.53 

6 10 4 8.12 21.25 8.41 8.12 8.12 8.12 

7 10 4 8.49 24.16 9.93 8.49 8.49 8.50 

8 10 4 9.62 23.19 10.19 9.62 9.62 9.62 

9 10 4 11.52 25.22 11.99 11.52 11.53 11.52 

10 10 4 5.30 18.17 5.32 5.30 5.30 5.30 

11 25 6  39.34 20.58 19.84 19.88 19.86 

12 25 6  43.23 21.91 20.65 20.66 20.68 

13 25 6  30.62 17.23 17.07 17.12 17.11 

14 25 6  43.52 23.03 22.14 22.17 22.18 

15 25 6  28.47 14.85 13.82 13.84 13.86 

16 25 6  32.93 18.86 18.27 18.30 18.28 

17 25 6  39.58 20.16 19.21 19.26 19.21 

18 25 6  36.22 18.39 17.21 17.27 17.25 

19 25 6  37.42 16.31 14.94 14.95 14.96 

20 25 6  45.17 22.97 22.31 22.33 22.33 

21 50 10  59.29 43.61 43.01 43.11 43.22 

22 50 10  57.30 43.54 42.14 42.54 42.53 

23 50 10  59.50 46.26 45.20 45.40 45.40 

24 50 10  138.11 137.89 54.81 58.13 58.24 

25 50 10  246.68 235.54 54.43 60.78 60.96 

26 50 10  187.09 189.18 42.19 45.05 43.68 

27 50 10  161.19 156.36 44.05 44.61 45.17 

28 50 10  166.37 165.88 45.86 49.89 49.73 

29 50 10  161.24 155.01 50.93 55.19 53.87 

30 50 10  148.88 142.15 45.03 53.71 54.16 
 

On the other side, time robustness of the GA 
caused decrease in the solution quality, compared to 
the VNS. Precisley, while the differences in 
solutions’ objective values in the case of small and 
medioum problem instances are negligible, they 
significantly increased in the case of the large 
problem instances. 

 

Table 2. Average algorithm run time in seconds 

Inst
No 
of 

trucks

No 
of 

docks
Opt DAH Insertion VNS 

GA 
1point

GA 
2point

1 10 4 2426.2 <0.01 <0.1 0.30 1.37 1.35

2 10 4 3161.3 <0.01 <0.1 0.27 1.17 1.10

3 10 4 2719.4 <0.01 <0.1 0.26 0.97 1.12

4 10 4 2804.2 <0.01 <0.1 0.26 1.14 1.29

5 10 4 1867.7 <0.01 <0.1 0.23 1.34 1.08

6 10 4 2191.5 <0.01 <0.1 0.26 1.04 1.09

7 10 4 4441.9 <0.01 <0.1 0.29 1.27 1.12

8 10 4 2840.0 <0.01 <0.1 0.31 0.93 0.96

9 10 4 3241.1 <0.01 <0.1 0.35 0.98 1.13

10 10 4 2914.8 <0.01 <0.1 0.25 1.37 1.12

11 25 6  <0.01 <0.1 9.82 1.80 2.16

12 25 6  <0.01 <0.1 9.12 2.48 2.15

13 25 6  <0.01 <0.1 9.08 2.44 2.07

14 25 6  <0.01 <0.1 10.89 2.47 2.87

15 25 6  <0.01 <0.1 9.90 2.16 2.07

16 25 6  <0.01 <0.1 8.73 2.57 2.49

17 25 6  <0.01 <0.1 10.50 1.77 2.07

18 25 6  <0.01 <0.1 10.22 2.76 2.28

19 25 6  <0.01 <0.1 11.58 2.39 2.45

20 25 6  <0.01 <0.1 11.36 2.35 2.32

21 50 10  <0.01 <0.1 221.14 5.55 6.70

22 50 10  <0.01 <0.1 300.09 7.55 8.07

23 50 10  <0.01 <0.1 236.69 6.91 7.18

24 50 10  <0.01 <0.1 224.78 10.17 9.08

25 50 10  <0.01 <0.1 313.02 11.43 10.17

26 50 10  <0.01 <0.1 223.79 11.81 9.70

27 50 10  <0.01 <0.1 200.45 9.06 8.98

28 50 10  <0.01 <0.1 215.51 12.14 8.75

29 50 10  <0.01 <0.1 246.69 9.08 8.81

30 50 10  <0.01 <0.1 266.70 12.85 10.25
  

Therefore, based on obtained results is can be 
concluded that implemented encoding may be very 
usefull for solving large instances of the TSchPTR. 
However, in order to improve solution quality of 
large instances an effort has to be made in direction 
of finding more appropriate crossover operators. 
Accordingly, the following research related to the 
TSchPTR will be pointed in that direction.  
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